Refine Your Search

Affiliation

Search Results

Technical Paper

Dynamic Biomechanical Dorsiflexion Responses and Tolerances of the Ankle Joint Complex

1997-11-12
973330
This paper presents comprehensive dorsiflexion responses and tolerances obtained from two types of dynamic tests on whole cadavers conducted at the Renault/PSA Laboratory of Accidentology and Biomechanics (LAB): sled tests and sub-system tests. In all the experiments (on whole cadavers), forces and moments within the ankle joint were accurately measured by means of a custom-designed 6-axis load cell implanted in the tibia, leaving all surrounding musculature intact. The results derived from both the sled tests and the subsystem tests are very similar. Moment-rotation curves are provided for the ankle joint. The force in the Achilles tendon which is not directly measured is calculated using the forces applied to the foot and the forces measured in the tibia.
Technical Paper

Biomechanical Response and Physical Properties of the Leg, Foot, and Ankle

1996-11-01
962424
The anatomical dimensions, inertial properties, and mechanical responses of cadaver leg, foot, and ankle specimens were evaluated relative to those of human volunteers and current anthropometric test devices. Dummy designs tested included the Hybrid III, Hybrid III with soft joint stops, ALEX I, and the GM/FTSS lower limbs. Static and dynamic tests of the leg, foot, and ankle were conducted at the laboratories of the Renault Biomedical Research Department and the University of Virginia. The inertial and geometric properties of the dummy lower limbs were measured and compared with cadaver properties and published volunteer values. Compression tests of the leg were performed using static and dynamic loading to determine compliance of the foot and ankle. Quasi-static rotational properties for dorsiflexion and inversion/eversion motion were obtained for the dummy, cadaver, and volunteer joints of the hindfoot.
Technical Paper

Validation Study of a 3D Finite Element Head Model Against Experimental Data

1996-11-01
962431
Very few finite element head models have been validated as required before being used to study brain injury mechanisms. This paper deals with the validation study of a 3D head model [1] against five cadaver tests [2]. It evaluates the current model ability to simulate brain responses and draws the research lines to improve it. Velocities on the closed rigid skull model were fixed to duplicate experimental applied loads. Validation parameters were constituted by three intra-cranial accelerations, three epidural pressures and in two cases, two extra pressures in the ventricles. The model response matched experimental results in terms of trend but presented significant oscillations. Moreover, there was a shift between experimental and numerical pressure curves. Brain material damping was introduced but numerical oscillations were slightly reduced.
Technical Paper

Methodological Aspects of an Experimental Research on Cerebral Tolerance on the Basis of Boxers' Training Fights

1987-11-01
872195
In order to obtain data about human head tolerance, the APR Laboratory of Biomechanics has developed a specific methodology for volunteer boxers. These ones are used because they expose themselves, in their normal body activities, to direct head impacts similar in nature to those experienced by vehicle occupants under crash conditions. This paper describes the specific experimental technique that permits association of the severity of the blows, measured in terms of physical parameters, to corresponding physiological effects, measured in medical terms.
Technical Paper

Neck Injury Criteria for Children from Real Crash Reconstructions

1993-11-01
933103
In view of the lack of data concerning child protection, an accidentological and experimental work was engaged. The goal of this international research involving experts from seven countries was two-fold: In one hand, to establish protection principles, gathering and analysing real crashes involving restrained children. In the other hand, to identify and to quantify injury mechanisms in order to increase knowledge on child tolerances. To realize this second part, real crash reconstructions were performed, in order to correlate observed injuries with recorded parameters on dummies. This paper mainly presents four real crashes with the corresponding reconstructions. A special analysis of injury mechanisms in relation with their respective pertinent parameters is then proposed.
Technical Paper

The Effect of Upper Body Mass and Initial Knee Flexion on the Injury Outcome of Post Mortem Human Subject Pedestrian Isolated Legs

2014-11-10
2014-22-0008
In the ECE 127 Regulation on pedestrian leg protection, as well as in the Euro NCAP test protocol, a legform impactor hits the vehicle at the speed of 40 kph. In these tests, the knee is fully extended and the leg is not coupled to the upper body. However, the typical configuration of a pedestrian impact differs since the knee is flexed during most of the gait cycle and the hip joint applies an unknown force to the femur. This study aimed at investigating the influence of the inertia of the upper body (modelled using an upper body mass fixed at the proximal end of the femur) and the initial knee flexion angle on the lower limb injury outcome. In total, 18 tests were conducted on 18 legs from 9 Post Mortem Human Subjects (PMHS). The principle of these tests was to impact the leg at 40 kph using a sled equipped with 3 crushing steel tubes, the stiffness of which were representative of the front face of a European sedan (bonnet leading edge, bumper and spoiler).
Technical Paper

Assessment of Several THOR Thoracic Injury Criteria based on a New Post Mortem Human Subject Test Series and Recommendations

2020-03-31
2019-22-0012
Several studies, available in the literature, were conducted to establish the most relevant criterion for predicting the thoracic injury risk on the THOR dummy. The criteria, such as the maximum deflection or a combination of parameters including the difference between the chest right and left deflections, were all developed based on given samples of Post Mortem Human Subject (PMHS). However, they were not validated against independent data and they are not always consistent with the observations from field data analysis. For this reason, 8 additional PMHS and matching THOR tests were carried out to assess the ability of the criteria to predict risks. Accident investigations showed that a reduction of the belt loads reduces the risk of rib fractures. Two configurations with different levels of force limitation were therefore chosen. A configuration representing an average European vehicle was chosen as a reference.
Technical Paper

THOR-05F Response in Sled Tests Inducing Submarining and Comparison with PMHS Response Corridors

2022-05-20
2021-22-0005
The Test Device for Human Occupant Restraint (THOR) is an advanced crash test dummy designed for frontal impact. Originally released in a 50th percentile male version (THOR-50M), a female 5th version (THOR-05F) was prototyped in 2017 (Wang et al., 2017) and compared with biofidelity sub-system tests (Wang et al., 2018). The same year, Trosseille et al. (2018) published response corridors using nine 5th percentile female Post Mortem Human Subjects (PMHS) tested in three sled configurations, including both submarining and non-submarining cases. The goal of this paper is to provide an initial evaluation of the THOR-05F biofidelity in a full-scale sled test, by comparing its response with the PMHS corridors published by Trosseille et al. (2018). Significant similarities between PMHS and THOR-05F were observed: as in Trosseille et al. (2018), the THOR-05F did not submarine in configuration 1, and submarined in configurations 2 and 3.
Technical Paper

Comparison of the Thor, Hybrid Iii and Cadaver Lower Leg Dynamic Responses in Dorsiflexion

1999-10-10
99SC10
As of toady, statutory crash test dummies take neither bracing nor passive muscular effect into account in the lower limb area. The influence of the lower extremity musculature is however arising as a major concern for the study of front seat occupant protection. The lower extremity prototype of the THOR dummy, including a model of the human plantarflexion actuator passive response, was tested in dynamic dorsiflexion. A dynamic test series was performed on Thor-Lx under test conditions similar to those used by Portier et al., 1996, on cadavers and Hybrid III dummy. The test setup imposed a dynamic dorsiflexion to the foot by means of a load exerted under the ball of the foot with no impact velocity. The Thor-Lx and Hill responses are compared to cadaver responses. It is important to note that as of today there are no data available to demonstrate that the passive resistance of the cadaver is equivalent to resistance of a tensed human.
Technical Paper

Characterization of PMHS Ribs: A New Test Methodology

2005-11-09
2005-22-0009
This paper presents the results of structural tests to investigate, first, the relationships between geometric and constitutive characteristics of ribs and, second, their mechanical behavior and rupture threshold. A new methodology was developed that included tests on complete isolated ribs. These tests simulated anterior-posterior loading, as seen in frontal impact. The 4th to 9th ribs were removed from five cadaver rib cages. The costal geometry was obtained from CT scans and was used to build a specific finite-element model for each rib tested. The test setup was composed of two caps wherein the two rib extremities were potted. One cap was fixed on the frame of the test setup through a pin joint. The second cap was fixed to a mobile truck through a pin joint. The truck allowed low friction translation along the anterior-posterior axis. Translation was imposed on the cap such that a constant displacement rate was obtained.
Technical Paper

Investigations on the Belt-to-Pelvis Interaction in Case of Submarining

2006-11-06
2006-22-0003
This study focuses on the phenomenon of lap belt slip on the iliac spines of the pelvis, commonly named “submarining ”. The first objective was to compare the interaction between the pelvis and the lap belt for both dummies and Post Mortem Human Subjects (PMHS). The second objective was to identify parameters influencing the lap belt hooking by the pelvis. For that purpose, a hydraulic test device was developed in order to impose the tension and kinematics of the lap belt such that they mimic what occurs in frontal car crashes. The pelvis was firmly fixed on the frame of this sub-system test-rig, while the belt anchorages were mobile. Fourteen tests on four Post-Mortem Human Subjects (PMHS) and fifteen tests on the THOR NT, Hybrid III 50th and Hybrid III 95th percentile dummies were carried out. The belt tension was kept constant while a dynamic rotation was imposed on the belt anchorages.
Technical Paper

3D Deformation and Dynamics of the Human Cadaver Abdomen under Seatbelt Loading

2008-11-03
2008-22-0011
According to accident analysis, submarining is responsible for most of the frontal car crash AIS 3+ abdominal injuries sustained by restrained occupants. Submarining is characterized by an initial position of the lap belt on the iliac spine. During the crash, the pelvis slips under the lap belt which loads the abdomen. The order of magnitude of the abdominal deflection rate was reported by Uriot to be approximately 4 m/s. In addition, the use of active restraint devices such as pretensioners in recent cars lead to the need for the investigation of Out-Of-Position injuries. OOP is defined by an initial position of the lap belt on the abdomen instead of the pelvis resulting in a direct loading of the abdomen during pretensioning and the crash. In that case, the penetration speed of the belt into the abdomen was reported by Trosseille to be approximately 8 to 12 m/s. The aim of this study was to characterize the response of the human abdomen in submarining and OOP.
Technical Paper

Investigation of Pelvic Injuries on Eighteen Post Mortem Human Subjects Submitted to Oblique Lateral Impacts

2016-11-07
2016-22-0005
The aim of this study was to investigate the sacroiliac joint injury mechanism. Two test configurations were selected from full scale car crashes conducted with the WorldSID 50th dummy resulting in high sacroiliac joint loads and low pubic symphysis force, i.e. severe conditions for the sacroiliac joint. The two test conditions were reproduced in laboratory using a 150-155 kg guided probe propelled respectively at 8 m/s and 7.5 m/s and with different shapes and orientations for the plate impacting the pelvis. Nine Post Mortem Human Subject (PMHS) were tested in each of the two configurations (eighteen PMHS in total). In order to get information on the time of fracture, eleven strain gauges were glued on the pelvic bone of each PMHS. Results - In the first configuration, five PMHS out of nine sustained AIS2+ pelvic injuries. All five presented sacroiliac joint injuries associated with pubic area injuries.
Technical Paper

Proposed Method for Development of Small Female and Midsize Male Thorax Dynamic Response Corridors in Side and Forward Oblique Impact Tests

2015-11-09
2015-22-0007
Despite the increasing knowledge of the thorax mechanics, the effects of inter-individual differences on the mechanical response are difficult to take into account. Several methods are available in the literature to refine the biofidelity corridors or to extrapolate them to other populations (eg: children, small females, large males). Because of the lack of concrete cases, the relevance of the assumptions is rarely investigated. In 2014, Baudrit et al. published data on thorax dynamic responses of small female and midsize male Post Mortem Human Subjects in side and forward oblique impact tests. The impactor mass was 23.4 kg for all the tests and the nominal impact speed was 4.3 m/s. The diameter of the rigid disk was 130 and 152 mm respectively for the small female specimens and for the midsize male specimens. The authors found that the maximum impact force was a function of the total body mass for each loading.
Technical Paper

A Comparison of Sacroiliac and Pubic Rami Fracture Occurrences in Oblique Side Impact Tests on Nine Post Mortem Human Subjects

2015-11-09
2015-22-0002
The WorldSID dummy can be equipped with both a pubic and a sacroiliac joint (S-I joint) loadcell. Although a pubic force criterion and the associated injury risk curve are currently available and used in regulation (ECE95, FMVSS214), as of today injury mechanisms, injury criteria, and injury assessment reference values are not available for the sacroiliac joint itself. The aim of this study was to investigate the sacroiliac joint injury mechanism. Three configurations were identified from full-scale car crashes conducted with the WorldSID 50th percentile male where the force passing through the pubis in all three tests was approximately 1500 N while the sacroiliac Fy / Mx peak values were 4500 N / 50 Nm, 2400 N / 130 Nm, and 5300 N / 150 Nm, respectively. These tests were reproduced using a 150 kg guided probe impacting Post Mortem Human Subjects (PMHS) at 8 m/s, 5.4 m/s and 7.5 m/s.
Technical Paper

New Reference PMHS Tests to Assess Whole-Body Pedestrian Impact Using a Simplified Generic Vehicle Front-End

2017-11-13
2017-22-0012
This study aims to provide a set of reference post-mortem human subject tests which can be used, with easily reproducible test conditions, for developing and/or validating pedestrian dummies and computational human body models against a road vehicle. An adjustable generic buck was first developed to represent vehicle front-ends. It was composed of four components: two steel cylindrical tubes screwed on rigid supports in V-form represent the bumper and spoiler respectively, a quarter of a steel cylindrical tube represents the bonnet leading edge, and a steel plate represents the bonnet. These components were positioned differently to represent three types of vehicle profile: a sedan, a SUV and a van. Eleven post-mortem human subjects were then impacted laterally in a mid-gait stance by the bucks at 40 km/h: three tests with the sedan, five with the SUV, and three with the van.
Technical Paper

Laboratory Reconstructions of Real World Frontal Crash Configurations Using the Hybrid III and THOR Dummies and PMHS

2002-11-11
2002-22-0002
Load-limiting belt restraints have been present in French cars since 1995. An accident study showed the greater effectiveness in thorax injury prevention using a 4 kN load limiter belt with an airbag than using a 6 kN load limiter belt without airbag. The criteria for thoracic tolerance used in regulatory testing is the sternal deflection for all restraint types, belt and/or airbag restraint. This criterion does not assess the effectiveness of the restraint 4 kN load limiter belt with airbag observed in accidentology. To improve the understanding of thoracic tolerance, frontal sled crashes were performed using the Hybrid III and THOR dummies and PMHS. The sled configuration and the deceleration law correspond to those observed in the accident study. Restraint conditions evaluated are the 6 kN load-limiting belt and the 4 kN load-limiting belt with an airbag. Loads between the occupant and the sled environment were recorded.
Technical Paper

Comparison of the Thorax Dynamic Responses of Small Female and Midsize Male Post Mortem Human Subjects in Side and Forward Oblique Impact Tests

2014-11-10
2014-22-0004
Despite the increasing knowledge of the thorax mechanics in impact loadings, the effects of inter-individual differences on the mechanical response are difficult to take into account. For example, the biofidelity corridors for the small female or large male are extrapolated from the midsize male corridors. The present study reports on the results of new tests performed on small female Post Mortem Human Subjects (PMHS), and compares them with test results on midsize male PMHS. Three tests in pure side impact and three tests in forward oblique impact were performed on the thorax of small female specimens. The average weight and stature were 43 kg and 1.58 m for the small female specimens. The initial speed of the impactor was 4.3 m/s. The mass and the diameter of the impactor face were respectively 23.4 kg and 130 mm. The instrumentation and methodology was the same as for the tests published in 2008 by Trosseille et al. on midsize male specimens.
Journal Article

Ligaments Laxity and Elongation at Injury in Flexed knees during Lateral Impact Conditions

2023-06-27
2022-22-0003
The knee is one of the regions of interest for pedestrian safety assessment. Past testing to study knee ligament injuries for pedestrian impact only included knees in full extension and mostly focused on global responses. As the knee flexion angle and the initial ligament laxity may affect the elongation at which ligaments fail, the objectives of this study were (1) to design an experimental protocol to assess the laxity of knee ligaments before measuring their elongation at failure, (2) to apply it in paired knee tests at two flexion angles (10 and 45 degrees). The laxity tests combined strain gauges to measure bone strains near insertions that would result from ligament forces and a custom machine to exercise the knee in all directions. Failure was assessed using a four-point bending setup with additional degrees of freedom on the axial rotation and displacement of the femur. A template was designed to ensure that the two setups used the exact same starting position.
Technical Paper

Finite Element Simulation Study of a Frontal Driver Airbag Deployment for Out-Of-Position Situations

2003-10-27
2003-22-0011
As more and more active restraint devices are added by vehicle manufacturers for occupant protection, the history of driver frontal airbags illustrates that the design performance of such devices for in-position (IP) occupants often have to be limited in order to reduce their aggressiveness for out-of-position (OOP) situations. As of today, a limited number of publications dealing with FE simulation of airbag deployment for OOP are available. The objective of our study was to evaluate the feasibility of airbag deployment simulations based on an extensive set of well-defined physical test matrix. A driver frontal airbag was chosen (European mid-size car sample) for this study. It was deployed against a force plate (14 tests in a total of 6 configurations), and used with Hybrid III 50th percentile dummy (HIII) in OOP tests (6 tests, 4 configurations). Special attention was paid to control the boundary conditions used in experiments in order to improve the modelling process.
X