Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

The Shock Absorber of Energy Recovery Using Electrorheological Fluid

2012-04-16
2012-01-0981
When vehicle traveling on the bumpy road or vehicle acceleration and deceleration, which will cause the body vibration of vehicle, at the same time, a large part of energy would be absorbed by the shock absorber transforms the mechanical energy into heat energy dissipated. In order to recycle the energy of vibration and keep the stability of running car, this paper provides the shock absorber of energy recovery that recycling the energy dissipated from the traditional absorber. The shock absorber includes rod and rodless chamber cavity, the two parts contain oil outlet and oil inlet, which connected to a bridge type loop of hydraulic to make pulsating oil pressure towards one direction, when the shock absorber vibration causes pulsating oil pressure, it drives hydraulic pump operation. Because the output shaft of the hydraulic pump fixedly attached to the input shaft of generator, so the generator produces electricity for recycling energy[1].
Technical Paper

The Modeling and Performance Analysis of the Retarder Thermal Management System

2012-09-24
2012-01-1929
In order to obtain the comprehensive evaluation of thermal management system for the retarder, the complete driveline thermal management model is built. The characteristic parameters for the thermal management system are determined and the hydromechanical characteristics for the retarder are fixed by the rig test. On the basis of the same whole vehicle driving cycle, comparing to the traditional mechanical-drive system, the independent-drive system makes the working temperature of the heat source more stable. Meanwhile the parasitic power caused by the radiator fan is decreased markedly on the condition that the heat reject requirement of the heat source is satisfied.
Technical Paper

Heavy Truck Driveline Components Modeling and Thermal Analyzing

2009-10-06
2009-01-2905
In heavy truck driveline system, the components often include clutch, transmission, transfer case, drive shaft, etc. A fluid torque converter could be equipped in front of the transmission in order to improve the starting performance. Meanwhile, a hydraulic retarder could be introduced for auxiliary braking so as to adapt the truck to the brake on long downgrade in mountainous regions. Thus, the driveline heat load would have a notable increase. Both the fluid torque converter and the hydraulic retarder would produce a large quantity of heat, and a special cooling system is needed for adjusting the transmission fluid temperature with which the gains are potentially very large [1]. The heat load for driveline is often calculated based on empirical formula. For the heavy truck, however, if the heat value is underestimated, driveline components would suffer from overheated damage.
Technical Paper

The Combined Braking Energy Management Strategy to Maximize Energy Recovery

2016-04-05
2016-01-0453
Eddy current retarder (ECR) shares a large market of auxiliary brakes in China, but shortcomings of the short continuous braking time and the high additional energy consumption are also obvious. The propose of combined braking partakes the braking torque of ECR. However, the existed serial-parallel braking strategy could hardly balance well the relationship between the braking stability and the energy recovery efficiency. This research puts forward an energy management strategy of combined braking system which aims to maximize energy recovery while ensure the brake stability. The motor speed, the braking request and the state of charge (SoC) of the storage module are analyzed synthetically to calculate the reasonable braking torque distribution proportion. And the recovered energy is priority for using in the braking unit to reduce the additional energy consumption in this strategy.
Technical Paper

Energy Consumption of Passenger Compartment Auxiliary Cooling System Based on Peltier Effect

2017-03-28
2017-01-0155
The closed cabin temperature is anticipated to be cooled down when it is a bit hot inside the driving car. The traditional air-condition lowers the cabin temperature by frequently switching the status of the compressor, which increases the engine’s parasitic power and shortens the compressor’s service-life. The semiconductor auxiliary cooling system with the properties of no moving parts, high control precision and quick response has the potential to assist the on-board air-condition in modulating the cabin temperature with relative small ranges. Little temperature differences between the cabin and the outside environment means that the system energy consumption to ensure the occupant comfort is relatively low and the inefficiency could be made up by the renewable energy source.
Technical Paper

Energy Saving Analysis of Vehicle Hydraulic Retarder Thermal Management System Based on Rankine Cycle

2016-09-18
2016-01-1941
Vehicle hydraulic retarders are applied in heavy-duty trucks and buses as an auxiliary braking device. In traditional cooling systems of hydraulic retarders, the working fluid is introduced into the heat exchanger to transfer heat to the cooling liquid in circulation, whose heat is then dissipated by the engine cooling system. This prevents the waste heat of the working fluid from being used effectively. In hydraulic retarder cooling system based on the Organic Rankine Cycle, the organic working fluid first transfers heat with the hydraulic retarder working fluid in Rankine cycle, and then outputs power through expansion machine. It can both reduce heat load of the engine cooling system, and enhance thermal stability of the hydraulic retarder while recovering and utilizing braking energy. First of all, according to the target vehicle model, hydraulic retarder cooling system model based on Rankine cycle is established.
Technical Paper

Model-Based Pressure Control for an Electro Hydraulic Brake System on RCP Test Environment

2016-09-18
2016-01-1954
In this paper a new pressure control method of a modified accumulator-type Electro-hydraulic Braking System (EHB) is proposed. The system is composed of a hydraulic motor pump, an accumulator, an integrated master cylinder, a pedal feel simulator, valves and pipelines. Two pressurizing modes are switched between by-motor and by-accumulator to adapt different pressure boost demands. A differentiator filtering raw sensor signal and calculating pedal speed is designed. By using the pedal feel simulator, the relationship between wheel pressures and brake force is decoupled. The relationships among pedal displacement, pedal force and wheel pressure are calibrated by experiments. A model-based PI controller with predictor is designed to lower the influences caused by delay. Moreover, a self-tuning regulator is introduced to deal with the parameter’s time-varying caused by temperature, brake pads wearing and delay variation.
Technical Paper

Thermal Stability Research of Vehicle Exhaust Waste-Heat Recovery System with Intermediate Medium

2016-04-05
2016-01-0228
Vehicle exhaust waste-heat recovery with thermoelectric power generators can improve energy efficiency, as well as vehicle fuel economy. In the conventional structure, the hot-end of thermoelectric module is directly connected with the outer wall of the exhaust pipe, while the cold-end is connected with the water pipe’s outer wall of the vehicle engine cooling cycle. However, the variety of vehicle engine operating conditions leads to the instability of the hot-end temperature, which will reduce the generating efficiency of the thermoelectric modules and also shorten its service life. This research is on the basis of constructing a heat transfer oil circulation, and to study the action principles and implementation methods of it.
Technical Paper

Study of Energy Recovery System Based on Organic Rankine Cycle for Hydraulic Retarder

2016-04-05
2016-01-0239
The hydraulic retarder is an auxiliary braking device used in heavy duty vehicle. It generates braking forceby liquid damping effect and makes inertial energy into thermal energy of the transmission medium when the vehicleis in thedownhill. The traditional thermal management system of the hydraulic retarder dissipates the heat of transmission medium out of the vehicle directly, which causes a big waste of energy, meanwhilethe thermal management system components need to consume engine power. This study applies organic Rankine cycle (ORC)cooling system to meet the high power cooling requirements of the hydraulic retarder and recover waste heat energy from the transmission medium at the same time and then supply energy to the thermal management system, which could save the parasitic power of the engine and improve the comprehensive energy utilization ratio of the vehicle.
Technical Paper

The Selection of Working Fluid Used in the Organic Rankine Cycle System for Hydraulic Retarder

2016-04-05
2016-01-0187
With the improvement of occupants’ awareness on the driving safety, hydraulic retarder applications increase quickly. The traditional hydraulic retarder, on the one hand, exhausts the waste heat of transmission oil by the engine cooling system; on the other hand, the engine power should be consumed to drive the water pump and the engine cooling fan for maintaining the normal operation of the auxiliary braking system. In this study, the Organic Rankine Cycle (ORC) instead of the traditional hydraulic retarder water-cooling system is applied to achieve the effective temperature control of the hydraulic retarder, while the waste heat of transmission oil could be recovered for saving vehicle energy consumption. The ORC fluid selection needs comprehensive consideration for the net power of the ORC and the optimal temperature range of the retarder transmission oil at both the inlet and outlet end, which is the key issue to ensure the stability and efficiency of the ORC system performance.
Journal Article

Boiling Coolant Vapor Fraction Analysis for Cooling the Hydraulic Retarder

2015-04-14
2015-01-1611
The hydraulic retarder is the most stabilized auxiliary braking system [1-2] of heavy-duty vehicles. When the hydraulic retarder is working during auxiliary braking, all of the braking energy is transferred into the thermal energy of the transmission medium of the working wheel. Theoretically, the residual heat-sinking capability of the engine could be used to cool down the transmission medium of the hydraulic retarder, in order to ensure the proper functioning of the hydraulic retarder. Never the less, the hydraulic retarder is always placed at the tailing head of the gearbox, far from the engine, long cooling circuits, which increases the risky leakage risk of the transmission medium. What's more, the development trend of heavy load and high speed vehicle directs the significant increase in the thermal load of the hydraulic retarder, which even higher than the engine power.
X