Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Aluminum Cylinder Head High Cycle Fatigue Durability Including the Effects of Manufacturing Processes

2012-04-16
2012-01-0540
High cycle fatigue material properties are not uniformly distributed on cylinder heads due to the casting process. Virtual Aluminum Casting (VAC) tools have been developed within Ford Motor Company to simulate the effects of the manufacturing process on the mechanical properties of cast components. One of VAC features is the ability to predict the high cycle fatigue strength distribution. Residual stresses also play an important role in cylinder head high cycle fatigue, therefore they are also simulated and used in the head high cycle fatigue analysis. Cylinder head assembly, thermal and operating stresses are simulated with ABAQUS™. The operating stresses are combined with the residual stresses for high cycle fatigue calculations. FEMFAT™ is used for the high cycle fatigue analysis. A user-defined Haigh diagram is built based on the local material properties obtained from the VAC simulation.
Technical Paper

Study the Relationship between CP Specimen Width and the Stress Intensity Factor Value around Nugget

2015-04-14
2015-01-0553
SIF value around weld nugget changes when specimen width is different. To investigate the influence of specimen width on SIF value around weld nugget of coach peel specimen (CP), a finite element model was established in this paper. In this model, a contour integral crack was used, and the area around the nugget was treated as crack tip. Results indicated that when specimen width was below 50mm, SIF decreased rapidly with the increase of specimen width. When specimen width was larger than 50mm, SIF almost remained constant with the variation of specimen width. To further study the influences of nugget diameter and sheet thickness on the Width-SIF curves, CP specimens with different nugget diameters (5mm, 6mm and 7mm) and sheet thicknesses (1.2mm, 1.6mm and 2.0mm) were established in ABAQUS. Simulation results of all CP specimens showed a similar relationship between specimen width and SIF.
Technical Paper

Fatigue Life Prediction for Adaptable Insert Welds between Sheet Steel and Cast Magnesium Alloy

2016-04-05
2016-01-0392
Joining technology is a key factor to utilize dissimilar materials in vehicle structures. Adaptable insert weld (AIW) technology is developed to join sheet steel (HSLA350) to cast magnesium alloy (AM60) and is constructed by combining riveting technology and electrical resistance spot welding technology. In this project, the AIW joint technology is applied to construct front shock tower structures composed with HSLA350, AM60, and Al6082 and a method is developed to predict the fatigue life of the AIW joints. Lap-shear and cross-tension specimens were constructed and tested to develop the fatigue parameters (load-life curves) of AIW joint. Two FEA modeling techniques for AIW joints were used to model the specimen geometry. These modeling approaches are area contact method (ACM) and TIE contact method.
Technical Paper

Weld Line Factors for Thermoplastics

2017-03-28
2017-01-0481
Weld lines occur when melt flow fronts meet during the injection molding of plastic parts. It is important to investigate the weld line because the weld line area can induce potential failure of structural application. In this paper, a weld line factor (W-L factor) was adopted to describe the strength reduction to the ultimate strength due to the appearance of weld line. There were two engineering thermoplastics involved in this study, including one neat PP and one of talc filled PP plastics. The experimental design was used to investigate four main injection molding parameters (melt temperature, mold temperature, injection speed and packing pressure). Both the tensile bar samples with/without weld lines were molded at each process settings. The sample strength was obtained by the tensile tests under two levels of testing speed (5mm/min and 200mm/min) and testing temperatures (room temperature and -30°C). The results showed that different materials had various values of W-L factor.
Technical Paper

Warpage Prediction on Injection Molded Semi-Crystalline Thermoplastics

2018-04-03
2018-01-0149
Warpage is the distortion induced by inhomogeneous shrinkage during injection molding of plastic parts. Uncontrolled warpage will result in dimensional instability and bring a lot of challenges to the mold design and part assembly. Current commercial simulation software for injection molding cannot provide consistently accurate warpage prediction, especially for semi-crystalline thermoplastics. In this study, the root cause of inconsistency in warpage prediction has been investigated by using injection molded polypropylene plaques with a wide range of process conditions. The warpage of injection molded plaques are measured and compared to the numerical predictions from Moldex3D. The study shows that with considering cooling rate effect on crystallization kinetics and using of the improved material model for residual stress calculations, good agreements are obtained between experiment and simulation results.
Technical Paper

Finite Element Modeling of Bolt Load Retention of Die-Cast Magnesium

2000-03-06
2000-01-1121
The use of die cast magnesium for automobile transmission cases offers promise for reducing weight and improving fuel economy. However, the inferior creep resistance of magnesium alloys at high temperature is of concern since transmission cases are typically assembled and joined by pre-loaded bolts. The stress relaxation of the material could thus adversely impact the sealing of the joint. One means of assessing the structural integrity of magnesium transmission cases is modeling the bolted joint, the topic of this paper. The commercial finite element code, ABAQUS, was used to simulate a well characterized bolt joint sample. The geometry was simulated with axi-symmetric elements with the exact geometry of a M10 screw. Frictional contact between the male and female parts is modeled by using interface elements. Material creep is described by a time hardening power law whose parameters are fit to experimental creep test data.
Technical Paper

Stress Analysis on the Single-Lap SPR- Adhesive Hybrid Joint

2018-04-03
2018-01-1445
Self-pierced rivet (SPR) and adhesive are two important joining technologies widely used in automobile industry, and they are often used together to form a hybrid joint. SPR and adhesives can often be used in close proximity in a component, leading to an interaction of the two joints. This interaction can influence the corrosion and noise, vibration and harshness (NVH) characteristics of the structure, as well as its strength and durability. In this paper, the stress distribution in an SPR-adhesive hybrid joint is evaluated by using the finite element method, and then compared with that in an adhesive joint. Results indicate that the stress concentrates at the edge of adhesive layer in hybrid joint and adhesive joint and around the rivet in an SPR joint. The effect of rivet is numerically investigated by either removing the rivet from the hybrid joint or changing the position of the rivet on the overlapping area.
Journal Article

Finite Element Modeling of Dissimilar Metal Self-piercing Riveting Process

2014-04-01
2014-01-1982
In present paper, the process of joining aluminum alloy 6111T4 and steel HSLA340 sheets by self-piercing riveting (SPR) is studied. The rivet material properties were obtained by inverse modeling approach. Element erosion technique was adopted in the LS-DYNA/explicit analysis for the separation of upper sheet before the rivet penetrates into lower sheet. Maximum shear strain criterion was implemented for material failure after comparing several classic fracture criteria. LS-DYNA/implicit was used for springback analysis following the explicit riveting simulation. Large compressive residual stress was observed near frequent fatigue crack initiation sites, both around vicinity of middle inner wall of rivet shank and upper 6111T4 sheet.
Journal Article

Finite Element Simulation of Compression Molding of Woven Fabric Carbon Fiber/Epoxy Composites: Part I Material Model Development

2016-04-05
2016-01-0498
Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple types of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Journal Article

Modeling and Simulation of Compression Molding Process for Sheet Molding Compound (SMC) of Chopped Carbon Fiber Composites

2017-03-28
2017-01-0228
Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial software packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In the present study, SMC plaques are prepared through compression molding process.
Journal Article

Study on Fatigue Behaviors of Porous T300/924 Carbon Fiber Reinforced Polymer Unidirectional Laminates

2017-03-28
2017-01-0223
Morphological features of voids were characterized for T300/924 12-ply and 16-ply composite laminates at different porosity levels through the implementation of a digital microscopy (DM) image analysis technique. The composite laminates were fabricated through compression molding. Compression pressures of 0.1MPa, 0.3MPa, and 0.5MPa were selected to obtain composite plaques at different porosity levels. Tension-tension fatigue tests at load ratio R=0.1 for composite laminates at different void levels were conducted, and the dynamic stiffness degradation during the tests was monitored. Fatigue mechanisms were then discussed based on scanning electron microscope (SEM) images of the fatigue fracture surfaces. The test results showed that the presence of voids in the matrix has detrimental effects on the fatigue resistance of the material, depending on the applied load level.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets Made with Different Processing Conditions

2018-04-03
2018-01-1237
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets made with different processing conditions are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints without clearance hole and lap-shear specimens with stripped FDS joints with clearance hole were made and then tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints without clearance hole (with gap) and the stripped FDS joints with clearance hole under quasi-static and cyclic loading conditions. The fatigue failure mode of the FDS joints without clearance hole (with gap) in lap-shear specimens is similar to those with clearance hole. The fatigue lives of lap-shear specimens with FDS joints without clearance hole are lower than those with clearance hole for given load ranges under cyclic loading conditions.
Technical Paper

Fatigue Life Prediction of Friction Stir Linear Welds for Magnesium Alloys

2016-04-05
2016-01-0386
Friction stir linear welding (FSLW) is widely used in joining lightweight materials including aluminum alloys and magnesium alloys. However, fatigue life prediction method for FSLW is not well developed yet for vehicle structure applications. This paper is tried to use two different methods for the prediction of fatigue life of FSLW in vehicle structures. FSLW is represented with 2-D shell elements for the structural stress approach and is represented with TIE contact for the maximum principal stress approach in finite element (FE) models. S-N curves were developed from coupon specimen test results for both the approaches. These S-N curves were used to predict fatigue life of FSLW of a front shock tower structure that was constructed by joining AM60 to AZ31 and AM60 to AM30. The fatigue life prediction results were then correlated with test results of the front shock tower structures.
X