Refine Your Search

Topic

Search Results

Technical Paper

The Effect of Intake, Injection Parameters and Fuel Properties on Diesel Combustion and Emissions

2003-05-19
2003-01-1793
To improve urban air pollution, stringent emissions regulations for heavy-duty diesel engines have been proposed and will become effective in Japan, the EU, and the United States in a few years. To comply with such future regulations, it is critical to investigate the effects of intake and injection parameters and fuel properties on engine performance, efficiency and emissions characteristics, associated with the use of aftertreatment systems. An experimental study was carried out to identify such effects. In addition, the KIVA-3 code was used to gain insight into cylinder events. The results showed improvements in NOx-Smoke and BSFC trade-offs at high-pressure injection in conjunction with EGR and supercharging.
Technical Paper

Predicting Exhaust Emissions in a Glow-Assisted DI Methanol Engine Using a Combustion Model Combined with Full Kinetics

1996-10-01
961935
A numerical model has been developed to predict the formation of NOx and formaldehyde in the combustion and post-combustion zones of a methanol DI engine. For this purpose, a methanol-air mixture model combined with a full kinetics model has been introduced, taking into account 39 species with their 157 related elementary reactions. Through these kinetic simulations, a concept is proposed for optimizing methanol combustion and reducing exhaust emissions.
Technical Paper

Simulating Exhaust Emissions Characteristics and Their Improvements in a Glow-Assisted DI Methanol Engine Using Combustion Models Combined with Detailed Kinetics

1997-05-01
971598
An experimental and numerical study has been conducted on the emission and reduction of HCHO (formaldehyde) and other pollutants formed in the cylinder of a direct-injection diesel engine fueled by methanol. Engine tests were performed under a variety of intake conditions including throttling, heating, and EGR (exhaust gas recirculation) for the purpose of improving these emissions by changing gas compositions and combustion temperatures in the cylinder. Moreover, a detailed kinetics model was developed and applied to methanol combustion to investigate HCHO formation and the reduction mechanism influenced by associated elementary reactions and in-cylinder mixing.
Technical Paper

Combustion and Exhaust Emissions in a Direct-injection Diesel Engine Dual-Fueled with Natural Gas

1995-02-01
950465
Dual-fuel operation of a direct-injection diesel engine with natural gas fuel can yield a high thermal efficiency almost comparable to the diesel operation at higher loads. The dual-fuel operation, however, at lower loads inevitably suffers from lower thermal efficiency and higher unburned fuel. To improve this problem, engine tests were carried out on a variety of engine parameters including diesel fuel injection timing advance, intake throttling and hot and cooled exhaust gas recirculation (EGR). It was found that diesel injection timing advance gave little improvement in thermal efficiency and increased NOx. Intake throttling promoted better combustion and shortened its duration with a consequent improvement in efficiency at higher natural gas fractions. Hot EGR raised thermal efficiency, reduced smoke levels, and maintained low NOx levels. Cooled EGR reduced NOx emissions but lowered thermal efficiency.
Technical Paper

The Control of Diesel Emissions by Supercharging and Varying Fuel-injection Parameters

1992-02-01
920117
A study has been made of an automotive direct injection diesel engine designed to reduce exhaust emissions, particularly NOx and particulates, without performance deterioration. Special emphasis has been placed on air-fuel mixing conditions controlled by the fuel injection rate, the intake swirl ratio, and the intake boost pressure. By means of increasing the injection rate, ignition delay can be shortened enough to improve particulate emissions at retarded injection timings. Enhancing the intake swirl velocity contributes to the reduction of soot emission in spite of the deterioration of NOx emission. Supercharging can favorably enhance diffusion combustion resulting in improved fuel economy for retarded injection timings and reduced emissions. As a result, a good compromise can be achieved between fuel economy and exhaust emissions by increasing the injection rate along with retarding the injection timing. Supercharging was found to be more favorable than swirl enhancement.
Technical Paper

Combined Effects of EGR and Supercharging on Diesel Combustion and Emissions

1993-03-01
930601
An experimental study has been made of a single cylinder, direct-injection diesel engine having a re-entrant combustion chamber designed to enhance combustion so as to reduce exhaust emissions. Special emphasis has been placed on controlling the inert gas concentration in the localized fuel-air mixture to lower combustion gas temperatures, thereby reduce exhaust NOx emission. For this specific purpose, an exhaust gas recirculation (EGR) system, which has been widely used in gasoline engines, was applied to the DI diesel engine to control the intake inert gas concentration. In addition, supercharging and increasing fuel injection pressure prevent the deterioration of smoke and unburned hydrocarbons and improve fuel economy, as well.
Technical Paper

Effects of Combustion Chamber Geometry on Diesel Combustion

1986-09-01
861186
A study has been made of an automotive direct-injection diesel engine in order to identify the effects of the combustion chamber geometry on combustion, with special emphasis focused on a re-entrant combustion chamber. Conventional combustion chambers and a re-entrant one were compared in terms of the combustion process, engine performance and NOx and smoke emissions. Heat transfer calculations and heat release analyses show that the re-entrant chamber tends to reduce ignition lag due to the higher temperatures of the wall on which injected fuel impinges. Analyses of turbulent flow characteristics in each chamber indicate that the re-entrant chamber enhances combustion because of the higher in-cylinder velocity accompanied by increased turbulence. Further, analyses of in-cylinder gas samples show lower soot levels in the re-entrant chamber. As a result, a good compromise can be achieved between fuel economy and exhaust emissions by retarding the fuel injection timing.
Technical Paper

Intercooling Effects of Methanol on Turbocharged Diesel Engine Performance and Exhaust Emissions

1984-09-01
841160
From the viewpoint of utilizing methanol fuel in an automotive turbocharged direct-injection diesel engine, an intercooling system supplying liquid methanol has been devised and its effects on engine performance and exhaust gas emissions have been investigated. With an electronically controlled injector in this system, methanol as a supplementary fuel to diesel fuel can be injected into the intake pipe in order to intercool a hot air charge compressed by the turbocharger. It has been confirmed that especially at heavy load conditions, methanol-intercooling can yield a higher thermal efficiency, and lower NOx and smoke emissions simultaneously, compared with three other cases without using methanol: natural aspiration and the cases with and without an ordinary intercooler. However, methanol fueling must be avoided at lower loads since sacrifices in efficiency and hydrocarbon emissions are inevitably involved.
Technical Paper

Improvement of NOx Reduction Rate of Urea-SCR System by NH3 Adsorption Quantity Control

2008-10-06
2008-01-2498
A urea SCR system was combined with a DPF system to reduce NOx and PM in a four liters turbocharged with intercooler diesel engine. Significant reduction in NOx was observed at low exhaust gas temperatures by increasing NH3 adsorption quantity in the SCR catalyst. Control logic of the NH3 adsorption quantity for transient operation was developed based on the NH3 adsorption characteristics on the SCR catalyst. It has been shown that NOx can be reduced by 75% at the average SCR inlet gas temperature of 158 deg.C by adopting the NH3 adsorption quantity control in the JE05 Mode.
Technical Paper

The Effects of Jatropha-derived Biodiesel on Diesel Engine Combustion and Emission Characteristics

2012-09-10
2012-01-1637
The objective of the present research is to investigate the effects on diesel engine combustion and NOx and PM emission characteristics in case of blending the ordinary diesel fuel with biodiesel in passenger car diesel engines. Firstly, we conducted experiments to identify the combustion and emissions characteristics in a modern diesel engine complying with the EURO 4 emission standard. Then, we developed a numerical simulation model to explain and generalize biodiesel combustion phenomena in detail and generalize emission characteristics. The experimental and simulation results are useful to reduce biodiesel emissions by controlling engine operating and design parameters in the diesel engine. Engine tests were conducted and a mathematical model created to investigate the effects of 40% and 100% methyl oleate modeled fuel representing Jatropha-derived biodiesel on diesel combustion and emission characteristics, over a wide range of passenger car DI diesel engine operating conditions.
Technical Paper

A Study on N2O Formation Mechanism and Its Reduction in a Urea SCR System Employed in a DI Diesel Engine

2012-09-10
2012-01-1745
N₂O is known to have a significantly high global warming potential. We measured N₂O emissions in engine-bench tests by changing the NO/NH₃ ratio and exhaust gas temperature at the oxidation catalyst inlet in a heavy-duty diesel engine equipped with a urea SCR (selective catalytic reduction) system. The results showed that the peak N₂O production ratio occurred at an exhaust gas temperature of around 200°C and the maximum value was 84%. Moreover, the N₂O production ratio increased with increasing NO/NH₃. Thus, we concluded that N₂O is produced via the NO branching reaction. Based on our results, two methods were proposed to decrease N₂O formation. At low temperatures ~200°C, NO should be reduced by controlling diesel combustion to lower the contribution of NO to N₂O production. This is essential because the SCR system cannot reduce NOx at low temperatures.
Technical Paper

Utilizing FAME as a Cetane Number Improver for a Light-duty Diesel Engine

2014-04-01
2014-01-1392
As the petroleum depletion, some of this demand will probably have to be met by increasing the production of diesel fuels from heavy oil or unconventional oil in the near future. Such fuels may inevitably have a lower cetane number (CN) with a higher concentration of aromatic components. The objective of the present research is to identify the effects of a typical biodiesel fuel as a CN improver for a light-duty diesel engine for passenger cars. Our previous study indicates that methyl oleate (MO), which is an oxygenated fuel representative of major constituents of many biodiesel types, can reduce soot and NOx emissions simultaneously by optimizing performance under exhaust gas recirculation (EGR) when used as a diesel fuel additive. In addition, it was found that MO tends to reduce the ignition delay. We employed a 2.2 L passenger car DI diesel engine complying with the Euro 4 emissions regulation.
Technical Paper

A Study on the Improvement of NOx Reduction Efficiency for a Urea SCR System

2015-09-01
2015-01-2014
Urea SCR (Selective Catalytic Reduction) exhaust after-treatment systems are one of the most promising measures to reduce NOx emissions from diesel engines. Both Cu-zeolite (Cu-SCR) and Fe-zeolite (Fe-SCR) urea SCR systems have been studied extensively but not many detailed studies have been conducted on the combination of both systems. Thus, we carried out studies on such Combined-SCR systems and their capability to reduce NOx under various engine operating conditions. We also conducted transient engine tests using different catalyst systems to compare their performance. The results show that combined-SCR systems can reduce NOx more effectively than Fe-SCR or Cu-SCR alone. The best NOx reduction performance was achieved at a Cu ratio of 0.667 (i.e. Fe: Cu =1: 2). Combined-SCR thus apparently benefits from the characteristics of both Cu-SCR and Fe-SCR, allowing it to reduce NOx over a wide range of operating conditions.
Technical Paper

A Numerical Study on the Effects of FAME Blends on Diesel Spray and Soot Formation by Using KIVA3V Code Including Detailed Kinetics and Phenomenological Soot Formation Models

2014-10-13
2014-01-2653
The objective of the present research was to analyze the effects of using oxygenated fuels (FAMEs or biodiesel fuels) on injected fuel spray and soot formation. A 3-D numerical study which using the KIVA-3V code with modified chemical and physical models was conducted. The large-eddy simulation (LES) model and KH-RT model were used to simulate fuel spray characteristics. To predict soot formation processes, a model for predicting gas-phase polycyclic aromatic hydrocarbons (PAHs) precursor formation was coupled with a detailed phenomenological particle formation model that included soot nucleation from the precursors, surface growth/oxidation and particle coagulation. The calculated liquid spray penetration results for all fuels agreed well with the measured data. The spray measurements were conducted using a constant volume chamber (CVC), which can simulate the ambient temperature and density under real engine conditions.
Technical Paper

Numerical Simulation on Soot Formation in Diesel Combustion by Using a CFD Code Combined with a Parallelized Explicit ODE Solver

2014-10-13
2014-01-2567
The objective of the present study is to analyze soot formation in diesel engine combustion by using multi-dimensional combustion simulations with a parallelized explicit ODE solver. Parallelized CHEMEQ2 was used to perform detailed chemical kinetics in KIVA-4 code. CHEMEQ2 is an explicit stiff ODE solver developed by Mott et al. which is known to be faster than traditional implicit ODE solvers, e.g., DVODE. In the present study, about eight times faster computation was achieved with CHEMEQ2 compared to DVODE when using a single thread. Further, by parallelizing CHEMEQ2 using OpenMP, the simulations could be run not only on calculation servers but also on desktop machines. The computation time decreases with the number of threads used. The parallelized CHEMEQ2 enabled combustion and emission characteristics, including detailed soot formation processes, to be predicted using KIVA-4 code with detailed chemical kinetics without the need for reducing the reaction mechanism.
Technical Paper

Computational Study to Improve Thermal Efficiency of Spark Ignition Engine

2015-03-10
2015-01-0011
The objective of this paper is to investigate the potential of lean burn combustion to improve the thermal efficiency of spark ignition engine. Experiments used a single cylinder gasoline spark ignition engine fueled with primary reference fuel of octane number 90, running at 4000 revolution per minute and at wide open throttle. Experiments were conducted at constant fueling rate and in order to lean the mixture, more air is introduced by boosted pressure from stoichiometric mixture to lean limit while maintaining the high output engine torque as possible. Experimental results show that the highest thermal efficiency is obtained at excess air ratio of 1.3 combined with absolute boosted pressure of 117 kPa. Three dimensional computational fluid dynamic simulation with detailed chemical reactions was conducted and compared with results obtained from experiments as based points.
Technical Paper

A Quasi Two Dimensional Model of Transport Phenomena in Diesel Particulate Filters - The Effects of Particle Diameter on the Pressure Drop in DPF Regeneration Mode-

2016-10-17
2016-01-2282
Experimental and numerical studies on the combustion of the particulate matter in the diesel particulate filter with the particulate matter loaded under different particulate matter loading condition were carried out. It was observed that the pressure losses through diesel particulate filter loaded with particulate matter having different mean aggregate particle diameters during both particulate matter loading and combustion periods. Diesel particulate filter regeneration mode was controlled with introducing a hot gas created in Diesel Oxidation Catalyst that oxidized hydrocarbon injected by a fuel injector placed on an exhaust gas pipe. The combustion amount was calculated with using a total diesel particulate filter weight measured by the weight meter both before and after the particulate matter regeneration event.
Technical Paper

A Quasi Two Dimensional Model of Transport Phenomena in Diesel Particulate Filters - The Effects of Particle and Wall Pore Diameter on the Pressure Drop -

2015-09-01
2015-01-2010
Experimental and numerical studies were conducted on diesel particulate filters (DPFs) under different soot loading conditions and DPF configurations. Pressure drops across DPFs with various mean pore diameters loaded with soots having different mean particle diameters were measured by introducing exhaust gases from a 2.2 liter inline four-cylinder, TCI diesel engine designed for use in passenger cars. A mechanistic hypothesis was then proposed to explain the observed trends, accounting for the effects of the soot loading regime in the wall and the soot cake layer on the pressure drop. This hypothesis was used to guide the development and validation of a numerical model for predicting the pressure drop in the DPF. The relationship between the permeability and the porosity of the wall and soot cake layer was modeled under various soot loading conditions.
Technical Paper

Control Strategy for Urea-SCR System in Single Step Load Transition

2006-10-16
2006-01-3308
Urea-SCR system has a high NOx reduction potential in the steady-state diesel engine operation. In complicated transient operations, however, there are certain problems with the urea-SCR system in that NOx reduction performance degrades and adsorbed NH3 would be emitted. Here, optimum urea injection methods and exhaust bypass control to overcome these problems are studied. This exhaust bypass control enables NO/NOx ratio at the inlet of SCR catalyst to be decreased widely, which prevents over production of NO2 at the pre-oxidation catalyst. Steady-state and simple transient engine tests were conducted to clarify NOx reduction characteristics when optimum urea injection pattern and exhaust bypass control were applied. In simple transient test, only the engine load was rapidly changed for obtaining the fundamental knowledge concerning the effect of those techniques.
Technical Paper

Experimental Study on Unregulated Emission Characteristics of Turbocharged DI Diesel Engine with Common Rail Fuel Injection System

2003-10-27
2003-01-3158
In this study, we selected four unregulated emissions species, formaldehyde, benzene, 1,3-butadiene and benzo[a]pyrene to research the emission characteristics of these unregulated components experimentally. The engine used was a water-cooled, 8-liter, 6-cylinder, 4-stroke-cycle, turbocharged DI diesel engine with a common rail fuel injection system manufactured for the use of medium-duty trucks, and the fuel used was JIS second-class light gas oil, which is commercially available as diesel fuel. The results of experiments indicate as follows: formaldehyde tends to be emitted under the low load condition, while 1,3-butadiene is emitted at the low engine speed. This is believed to be because 1,3-butadiene decomposes in a short time, and the exhaust gas stays much longer in a cylinder under the low speed condition than under the high engine speed one. Benzene is emitted under the low load condition, as it is easily oxidized in high temperature.
X