Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Development of Shear Fracture Criterion for Dual-Phase Steel Stamping

Forming Limit Diagrams (FLD) have been widely and successfully used in sheet metal stamping as a failure criterion to detect localized necking, which is the most common failure mechanism for conventional steels during forming. However, recent experience from stamping Dual-Phase steels found that, under certain circumstances such as stretching-bend over a small die radius, the sheet metal fails earlier than that predicted by the FLD based on the initiation of a localized neck. It appears that a different failure mechanism and mode are in effect, commonly referred to as “shear fracture” in the sheet metal stamping community. In this paper, experimental and numerical analysis is used to investigate the shear fracture mechanism. Numerical models are established for a stretch-bend test on DP780 steel with a wide range of bend radii for various failure modes. The occurrences of shear fracture are identified by correlating numerical simulation results with test data.
Technical Paper

Locking Phenomena in the Use of Solid Elements for Sheet Metal Forming Simulation

This paper is concerned with the use of solid elements in sheet metal forming simulation, particularly springback prediction for flanging when the flanging radii are comparable with the metal thickness. It is demonstrated that appropriate solid elements must be used instead of shell elements in order to obtain adequate results. Numerical difficulties associated with development of suitable solid elements are discussed in detail, with emphasis on the volumetric locking and transverse shear locking phenomena respectively. The transverse shear locking arises from the incompatible deformation modes when the element is used for thin structure bending analysis. A four point bending testing problem is used to study the performances of different solid elements. A locking-free solid element based on assumed strain formulation is developed in Ford in-house program MTLFRM for accurate springback prediction, and a flanging example is given to demonstrate its application.
Technical Paper

Die Wear Severity Diagram and Simulation

Die wear is a significant issue in sheet metal forming particularly for stamping Advanced High-Strength Steels (AHSS) because of their higher strength and microstructure composition. Reliable predictions of the magnitude and distribution of die wear are essential if cost-effective wear-protection strategies are desired in the early stages of tooling development. A die Wear Severity Index (WSI) is introduced in this paper to quantify the magnitude of die wear, which in essence characterizes the frictional energy dissipation per unit area on the die surface throughout the entire forming cycle. It can be readily obtained as part of any finite element simulation of stamping process utilizing incremental solution techniques.
Technical Paper

Stretch Flanging Formability Prediction and Shape Optimization

Flanging is a secondary operation in sheet metal forming processes. Traditionally, the design of flange shape and trim line is based on an engineer's experience. It takes several iterations to achieve the desired flange geometry because of potential splits. In this paper, an efficient CAE-based tool is developed to quickly predict the formability of a given flange design and enable the optimization of trim lines. A numerical algorithm is formulated in this CAE tool to convert the 3D flanging process into an equivalent in-plane deformation problem. The developed CAE tool is also integrated with the optimization software LS-OPT for trim line design.
Technical Paper

An Investigation of Springback Stresses in Deep-Drawn Cups Using Diffraction Techniques

Prediction of springback has become a major focus in sheet metal forming. Validation of finite element codes that are being developed to predict springback require accurate property data and a more complete understanding of the residual stresses that are involved. To provide experimental data for these calculations, neutron and synchrotron X-ray diffraction measurements were carried out to determine the through-thickness distribution of axial and hoop (or tangential) residual stresses in deep-drawn steel and aluminum cups. The techniques are able to provide true spatial resolutions as low as 0.05 mm for a strain measurement on cups with ≤ 1 mm wall thickness. It was found that the stresses exhibit non-linear gradients through the thickness that also depend on the axial position.
Technical Paper

A Comparative Study of Dent Resistance Incorporating Forming Effects

Dent resistance is an important attribute in the automotive panel design, and the ability to accurately predict a panel's dentability requires careful considerations of sheet metal properties, including property changes from stamping process. The material is often work-hardened significantly during forming, and its thickness is reduced somewhat. With increased demand for weight reduction, vehicle designers are seriously pushing to use thinner-gauged advanced high-strength steels (AHSS) as outer body panels such as fenders, hoods and decklids, with the expectation that its higher strength will offset reduced thickness in its dentability. A comparative study is conducted in this paper for a BH210 steel fender as baseline design and thinner DP500 steel as the new design.
Technical Paper

A Benchmark Test for Springback: Experimental Procedures and Results of a Slit-Ring Test

Experimental procedures and results of a benchmark test for springback are reported and a complete suite of obtained data is provided for the validation of forming and springback simulation software. The test is usually referred as the Slit-Ring test where a cylindrical cup is first formed by deep drawing and then a ring is cut from the mid-section of the cup. The opening of the ring upon slitting releases the residual stresses in the formed cup and provides a valuable set of easy-to-measure, easy-to-characterize springback data. The test represents a realistic deep draw stamping operation with stretching and bending deformation, and is highly repeatable in a laboratory environment. In this study, six different automotive materials are evaluated.
Journal Article

A Path Independent Forming Limit Criterion for Sheet Metal Forming Simulations

A new strain-based forming limit criterion is proposed to assess the localized necking failure for sheet metal forming simulations when deformation paths deviate significantly from linearity. Different from the traditional strain-based Forming Limit Diagrams (FLD) in terms of major and minor strains, the new FLD is constructed based on effective strains and material flow direction at the end of forming. This new criterion combines the advantages of stress-based FLD for its path-independence and the traditional linear strain path FLD for its easy interpretation. The proposed FLD is validated through both theoretical prediction with Marciniak-Kuczynski (M-K) model and available experimental data in literature, and its relationship with stress-based FLDs is discussed.
Journal Article

Robust Optimization of Drawbead Forces for a B-pillar Stamping

Many uncertainties exist in the sheet metal stamping such as the variation of incoming material properties, die and press setup conditions, long-term tool wear and degradations. They are interacting in a way to make the process less robust, thus contributing to increased scrap rates and more unscheduled downtime. This paper presents a new approach for the die design optimization where these uncertainties are taken into account. A Tailor-Welded B-pillar consisting of 1.65mm DP600 and 0.9mm DDQ is selected as the focal part to demonstrate the new design process. The study is divided into two phases. The focus of the first phase is to understand the complexity of the formability window and determine effective optimization techniques under deterministic conditions. It is found that the formability window is highly nonlinear, or even discontinuous if a global objective function such as the Maximum Failure Factor is used.
Journal Article

Deformation Analysis of Incremental Sheet Forming

Incremental Sheet Forming (ISF) is an emerging sheet metal prototyping technology where a part is formed as one or more stylus tools are moving in a pre-determined path and deforming the sheet metal locally while the sheet blank is clamped along its periphery. A deformation analysis of incremental forming process is presented in this paper. The analysis includes the development of an analytical model for strain distributions based on part geometry and tool paths; and numerical simulations of the forming process with LS-DYNA. A skew cone is constructed and used as an example for the study. Analytical and numerical results are compared, and excellent correlations are found. It is demonstrated that the analytical model developed in this paper is reliable and efficient in the prediction of strain distributions for incremental forming process.