Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Multi Objective Optimization of Vehicle Crashworthiness Based on Combined Surrogate Models

2017-03-28
2017-01-1473
Several surrogate models such as response surface model and radial basis function and Kriging models are developed to speed the optimization design of vehicle body and improve the vehicle crashworthiness. The error analysis is used to investigate the accuracy of different surrogate models. Furthermore, the Kriging model is used to fit the model of B-pillar acceleration and foot well intrusion. The response surface model is used to fit the model of the entire vehicle mass. These models are further used to calculate the acceleration response in B-pillar, foot well intrusion and vehicle mass instead of the finite element model in the optimization design of vehicle crashworthiness. A multi-objective optimization problem is formulated in order to improve vehicle safety performance and keep its light weight. The particle swarm method is used to solve the proposed multi-objective optimization problem.
Technical Paper

An Improved K-Means Based Design Domain Recognition Method for Automotive Structural Optimization

2018-04-03
2018-01-1032
Design optimization methods are widely used for weight reduction subjecting to multiple constraints in automotive industry. One of the major challenges is to search for the optimal design in an efficient manner. For complex design and optimization problems such as automotive applications, optimization algorithms work better if the initial searching points are within or close to feasible domains. In this paper, the k-means clustering algorithm is exploited to identify sets of reduced feasible domains from the original design space. Within the reduced feasible domains, the optimal design can be obtained efficiently. A mathematical example and a vehicle body structure design problem are used to demonstrate the effectiveness of the proposed method.
Technical Paper

Automotive Crashworthiness Design Optimization Based on Efficient Global Optimization Method

2018-04-03
2018-01-1029
Finite element (FE) models are commonly used for automotive crashworthiness design. However, even with increasing speed of computers, the FE-based simulation is still too time-consuming when simulating the complex dynamic process such as vehicle crashworthiness. To improve the computational efficiency, the response surface model, as the surrogate of FE model, has been widely used for crashworthiness optimization design. Before introducing the surrogate model into the design optimization, the surrogate should satisfy the accuracy requirements. However, the bias of surrogate model is introduced inevitably. Meanwhile, it is also very difficult to decide how many samples are needed when building the high fidelity surrogate model for the system with strong nonlinearity. In order to solve the aforementioned problems, the application of a kind of surrogate optimization method called Efficient Global Optimization (EGO) is proposed to conduct the crashworthiness design optimization.
Technical Paper

Investigation of the Samples Size Effects on Hybrid Surrogate Model Component Surrogates for Crashworthiness Design

2018-04-03
2018-01-1028
Surrogate model based design optimization has been widely adopted in automotive industry. Hybrid surrogate model with multiple component surrogates is considered to be a better choice when simulating highly non-linear responses in vehicle crashworthiness analysis. Currently, the number of component surrogates has to be decided before-hand when constructing of a hybrid surrogate model. This paper conducts a comparative study on the performances of three popular hybrid modeling methods including heuristic computation strategy, and two kinds of optimal weighted surrogates. The effects of samples size on the number of individual surrogates that should be included into the final hybrid surrogate models for crashworthiness responses are investigated. Different hybrid modeling techniques and multiple validation criteria are evaluated. Some observations and conclusions on the selection of component surrogates in hybrid surrogate modeling are given in the end.
Technical Paper

A Maximum Incompatibility Constrained Collaborative Optimization Method for Vehicle Weight Reduction

2018-04-03
2018-01-0585
Collaborative optimization is an important design tool in complex vehicle system engineering. However, there are many problems yet to be resolved when applying the conventional collaborative optimization method in vehicle body weight reduction, such as convergence difficulties and low optimization efficiency. To solve these problems, a maximum incompatibility constrained collaborative optimization method is proposed in the paper. First, the 1-norm equality constraints expression of the system level is used to replace the traditional 2-norm inequality constraints. Then, a maximum incompatibility is selected from modified inequality constraints to improve optimization efficiency. Finally, an overall compatibility constraint is introduced to decrease the influence caused by the initial point. A mathematical example is used to verify the effectiveness and stability of the proposed method.
Technical Paper

A Data Mining and Optimization Process with Shape and Size Design Variables Consideration for Vehicle Application

2018-04-03
2018-01-0584
This paper presents a design process with data mining technique and advanced optimization strategy. The proposed design method provides insights in three aspects. First, data mining technique is employed for analysis to identify key factors of design variables. Second, relationship between multiple types of size and shape design variables and performance responses can be analyzed. Last but not least, design preference can be initialized based on data analysis to provide priori guidance for the starting design points of optimization algorithm. An exhaust system design problem which largely contributes to the improvement of vehicular Noise, Vibration and Harshness (NVH) performance is employed for the illustration of the process. Two types of design parameters, structural variable (gauge of component) and layout variable (hanger location), are considered in the studied case.
Technical Paper

A Research on the Body-in-White (BIW) Weight Reduction at the Conceptual Design Phase

2014-04-01
2014-01-0743
Vehicle weight reduction has become one of the essential research areas in the automotive industry. It is important to perform design optimization of Body-in-White (BIW) at the concept design phase so that to reduce the development cost and shorten the time-to-market in later stages. Finite Element (FE) models are commonly used for vehicle design. However, even with increasing speed of computers, the simulation of FE models is still too time-consuming due to the increased complexity of models. This calls for the development of a systematic and efficient approach that can effectively perform vehicle weight reduction, while satisfying the stringent safety regulations and constraints of development time and cost. In this paper, an efficient BIW weight reduction approach is proposed with consideration of complex safety and stiffness performances. A parametric BIW FE model is first constructed, followed by the building of surrogate models for the responses of interest.
Technical Paper

Data Mining Based Feasible Domain Recognition for Automotive Structural Optimization

2016-04-05
2016-01-0268
Computer modeling and simulation have significantly facilitated the efficiency of product design and development in modern engineering, especially in the automotive industry. For the design and optimization of car models, optimization algorithms usually work better if the initial searching points are within or close to a feasible domain. Therefore, finding a feasible design domain in advance is beneficial. A data mining technique, Iterative Dichotomizer 3 (ID3), is exploited in this paper to identify sets of reduced feasible design domains from the original design space. Within the reduced feasible domains, optimal designs can be efficiently obtained while releasing computational burden in iterations. A mathematical example is used to illustrate the proposed method. Then an industrial application about automotive structural optimization is employed to demonstrate the proposed methodology. The results show the proposed method’s potential in practical engineering.
Technical Paper

The Design Optimization of Vehicle Interior Noise through Structural Modification and Constrained Layer Damping Treatment

2015-04-14
2015-01-0663
The design optimization of vehicle body structure is addressed to reduce interior noise and improve customer satisfaction in this paper. The structural-acoustic model is developed by using finite element method. The frequency response of structural-acoustic system is computed by modal analysis method. The optimization problem is constructed to minimize the sound pressure level in the right ear of the driver. The sensitivity analysis is carried out to find the key panels to be optimized as design variables and improve the efficiency of optimization computation. Response Surface Method (RSM) is utilized to develop the surrogate model and optimize the vehicle Noise Vehicle and Harshness (NVH) behavior. A 9dB reduction of sound pressure level (SPL) in the right era of the driver is obtained through geometric optimization for panels. Furthermore, the topology optimization model is developed to search the optimal layout of constrained layer damping treatments in the front floor.
Technical Paper

Design Optimization of Vehicle Body NVH Performance Based on Dynamic Response Analysis

2017-03-28
2017-01-0440
Noise-vibration-harshness (NVH) design optimization problems have become major concerns in the vehicle product development process. The Body-in-White (BIW) plays an important role in determining the dynamic characteristics of vehicle system during the concept design phase. Finite Element (FE) models are commonly used for vehicle design. However, even though the speed of computers has been increased a lot, the simulation of FE models is still too time-consuming due to the increase in model complexity. For complex systems, like vehicle body structures, the numerous design variables and constraints make the FE simulations based optimization design inefficient. This calls for the development of a systematic and efficient approach that can effectively perform optimization to further improve the NVH performance, while satisfying the stringent design constraints.
Journal Article

A Stochastic Bias Corrected Response Surface Method and its Application to Reliability-Based Design Optimization

2014-04-01
2014-01-0731
In vehicle design, response surface model (RSM) is commonly used as a surrogate of the high fidelity Finite Element (FE) model to reduce the computational time and improve the efficiency of design process. However, RSM introduces additional sources of uncertainty, such as model bias, which largely affect the reliability and robustness of the prediction results. The bias of RSM need to be addressed before the model is ready for extrapolation and design optimization. This paper further investigates the Bayesian inference based model extrapolation method which is previously proposed by the authors, and provides a systematic and integrated stochastic bias corrected model extrapolation and robustness design process under uncertainty. A real world vehicle design example is used to demonstrate the validity of the proposed method.
Journal Article

An Enhanced Input Uncertainty Representation Method for Response Surface Models in Automotive Weight Reduction Applications

2015-04-14
2015-01-0423
Vehicle weight reduction has become one of the viable solutions to ever-growing energy and environmental crisis. In vehicle design, response surface model (RSM) is commonly used as a surrogate of the high fidelity Finite Element (FE) model to reduce the computational time and improve the efficiency of design process. However, RSM introduces additional sources of uncertainty, such as model bias, which largely affects the reliability and robustness of the prediction results. The bias of RSM need to be addressed before the model is ready for extrapolation and design optimization. For the purpose of constructing and correcting the bias in RSMs, scheduling Design of Experiments (DOEs) must be conducted properly. This paper develops a method to arrange DOEs in order to build RSMs with high quality, considering the influence of input uncertainty.
Journal Article

A Corrected Surrogate Model Based Multidisciplinary Design Optimization Method under Uncertainty

2017-03-28
2017-01-0256
Vehicle weight reduction has become one of the most crucial problems in the automotive industry because that increasingly stringent regulatory requirements, such as fuel economy and environmental protection, must be met. The lightweight design needs to consider various vehicle attributes, including crashworthiness and stiffness. Therefore, in essence, the vehicle weight reduction is a typical Multidisciplinary Design Optimization problem. To improve the computational efficiency, meta-models have been widely used as the surrogate of FE model in the multidisciplinary optimization of large structures. However, these surrogate models introduce additional sources of uncertainties, such as model uncertainty, which may lead to the poor accuracy in prediction. In this paper, a method of corrected surrogate model based multidisciplinary design optimization under uncertainty is proposed to incorporate the uncertainties introduced by both meta-models and design variables.
Journal Article

On Stochastic Model Interpolation and Extrapolation Methods for Vehicle Design

2013-04-08
2013-01-1386
Finite Element (FE) models are widely used in automotive for vehicle design. Even with increasing speed of computers, the simulation of high fidelity FE models is still too time-consuming to perform direct design optimization. As a result, response surface models (RSMs) are commonly used as surrogates of the FE models to reduce the turn-around time. However, RSM may introduce additional sources of uncertainty, such as model bias, and so on. The uncertainty and model bias will affect the trustworthiness of design decisions in design processes. This calls for the development of stochastic model interpolation and extrapolation methods that can address the discrepancy between the RSM and the FE results, and provide prediction intervals of model responses under uncertainty.
X