Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

Optimal Water Jacket Flow Distribution Using a New Group-Based Space-Filling Design of Experiments Algorithm

2018-04-03
2018-01-1017
The availability of computational resources has enabled an increased utilization of Design of Experiments (DoE) and metamodeling (response surface generation) for large-scale optimization problems. Despite algorithmic advances however, the analysis of systems such as water jackets of an automotive engine, can be computationally demanding in part due to the required accuracy of metamodels. Because the metamodels may have many inputs, their accuracy depends on the number of training points and how well they cover the entire design (input) space. For this reason, the space-filling properties of the DoE are very important. This paper utilizes a new group-based DoE algorithm with space-filling groups of points to construct a metamodel. Points are added sequentially so that the space-filling properties of the entire group of points is preserved. The addition of points is continuous until a specified metamodel accuracy is met.
Technical Paper

Modeling the Stiffness and Damping Properties of Styrene-Butadiene Rubber

2011-05-17
2011-01-1628
Styrene-Butadiene Rubber (SBR), a copolymer of butadiene and styrene, is widely used in the automotive industry due to its high durability and resistance to abrasion, oils and oxidation. Some of the common applications include tires, vibration isolators, and gaskets, among others. This paper characterizes the dynamic behavior of SBR and discusses the suitability of a visco-elastic model of elastomers, known as the Kelvin model, from a mathematical and physical point of view. An optimization algorithm is used to estimate the parameters of the Kelvin model. The resulting model was shown to produce reasonable approximations of measured dynamic stiffness. The model was also used to calculate the self heating of the elastomer due to energy dissipation by the viscous damping components in the model. Developing such a predictive capability is essential in understanding the dynamic behavior of elastomers considering that their dynamic stiffness can in general depend on temperature.
Technical Paper

A Cost-Driven Method for Design Optimization Using Validated Local Domains

2013-04-08
2013-01-1385
Design optimization often relies on computational models, which are subjected to a validation process to ensure their accuracy. Because validation of computer models in the entire design space can be costly, we have previously proposed an approach where design optimization and model validation, are concurrently performed using a sequential approach with variable-size local domains. We used test data and statistical bootstrap methods to size each local domain where the prediction model is considered validated and where design optimization is performed. The method proceeds iteratively until the optimum design is obtained. This method however, requires test data to be available in each local domain along the optimization path. In this paper, we refine our methodology by using polynomial regression to predict the size and shape of a local domain at some steps along the optimization process without using test data.
Journal Article

A Simulation and Optimization Methodology for Reliability of Vehicle Fleets

2011-04-12
2011-01-0725
Understanding reliability is critical in design, maintenance and durability analysis of engineering systems. A reliability simulation methodology is presented in this paper for vehicle fleets using limited data. The method can be used to estimate the reliability of non-repairable as well as repairable systems. It can optimally allocate, based on a target system reliability, individual component reliabilities using a multi-objective optimization algorithm. The algorithm establishes a Pareto front that can be used for optimal tradeoff between reliability and the associated cost. The method uses Monte Carlo simulation to estimate the system failure rate and reliability as a function of time. The probability density functions (PDF) of the time between failures for all components of the system are estimated using either limited data or a user-supplied MTBF (mean time between failures) and its coefficient of variation.
Journal Article

Enhancing Decision Topology Assessment in Engineering Design

2014-04-01
2014-01-0719
Implications of decision analysis (DA) on engineering design are important and well-documented. However, widespread adoption has not occurred. To that end, the authors recently proposed decision topologies (DT) as a visual method for representing decision situations and proved that they are entirely consistent with normative decision analysis. This paper addresses the practical issue of assessing the DTs of a designer using their responses. As in classical DA, this step is critical to encoding the DA's preferences so that further analysis and mathematical optimization can be performed on the correct set of preferences. We show how multi-attribute DTs can be directly assessed from DM responses. Furthermore, we show that preferences under uncertainty can be trivially incorporated and that topologies can be constructed using single attribute topologies similarly to multi-linear functions in utility analysis. This incremental construction simplifies the process of topology construction.
Journal Article

An Improved Reanalysis Method Using Parametric Reduced Order Modeling for Linear Dynamic Systems

2016-04-05
2016-01-1318
Finite element analysis is a standard tool for deterministic or probabilistic design optimization of dynamic systems. The optimization process requires repeated eigenvalue analyses which can be computationally expensive. Several reanalysis techniques have been proposed to reduce the computational cost including Parametric Reduced Order Modeling (PROM), Combined Approximations (CA), and the Modified Combined Approximations (MCA) method. Although the cost of reanalysis is substantially reduced, it can still be high for models with a large number of degrees of freedom and a large number of design variables. Reanalysis methods use a basis composed of eigenvectors from both the baseline and the modified designs which are in general linearly dependent. To eliminate the linear dependency and improve accuracy, Gram Schmidt orthonormalization is employed which is costly itself.
Journal Article

Uncertainty Assessment in Restraint System Optimization for Occupants of Tactical Vehicles

2016-04-05
2016-01-0316
We have recently obtained experimental data and used them to develop computational models to quantify occupant impact responses and injury risks for military vehicles during frontal crashes. The number of experimental tests and model runs are however, relatively small due to their high cost. While this is true across the auto industry, it is particularly critical for the Army and other government agencies operating under tight budget constraints. In this study we investigate through statistical simulations how the injury risk varies if a large number of experimental tests were conducted. We show that the injury risk distribution is skewed to the right implying that, although most physical tests result in a small injury risk, there are occasional physical tests for which the injury risk is extremely large. We compute the probabilities of such events and use them to identify optimum design conditions to minimize such probabilities.
Journal Article

Time-Dependent Reliability-Based Design Optimization of Vibratory Systems

2017-03-28
2017-01-0194
A methodology for time-dependent reliability-based design optimization of vibratory systems with random parameters under stationary excitation is presented. The time-dependent probability of failure is computed using an integral equation which involves up-crossing and joint up-crossing rates. The total probability theorem addresses the presence of the system random parameters and a sparse grid quadrature method calculates the integral of the total probability theorem efficiently. The sensitivity derivatives of the time-dependent probability of failure with respect to the design variables are computed using finite differences. The Modified Combined Approximations (MCA) reanalysis method is used to reduce the overall computational cost from repeated evaluations of the system frequency response or equivalently impulse response function. The method is applied to the shape optimization of a vehicle frame under stochastic loading.
Journal Article

A Nonparametric Bootstrap Approach to Variable-size Local-domain Design Optimization and Computer Model Validation

2012-04-16
2012-01-0226
Design optimization often relies on computational models, which are subjected to a validation process to ensure their accuracy. Because validation of computer models in the entire design space can be costly, a recent approach was proposed where design optimization and model validation were concurrently performed using a sequential approach with both fixed and variable-size local domains. The variable-size approach used parametric distributions such as Gaussian to quantify the variability in test data and model predictions, and a maximum likelihood estimation to calibrate the prediction model. Also, a parametric bootstrap method was used to size each local domain. In this article, we generalize the variable-size approach, by not assuming any distribution such as Gaussian. A nonparametric bootstrap methodology is instead used to size the local domains. We expect its generality to be useful in applications where distributional assumptions are difficult to verify, or not met at all.
Journal Article

A Variable-Size Local Domain Approach to Computer Model Validation in Design Optimization

2011-04-12
2011-01-0243
A common approach to the validation of simulation models focuses on validation throughout the entire design space. A more recent methodology validates designs as they are generated during a simulation-based optimization process. The latter method relies on validating the simulation model in a sequence of local domains. To improve its computational efficiency, this paper proposes an iterative process, where the size and shape of local domains at the current step are determined from a parametric bootstrap methodology involving maximum likelihood estimators of unknown model parameters from the previous step. Validation is carried out in the local domain at each step. The iterative process continues until the local domain does not change from iteration to iteration during the optimization process ensuring that a converged design optimum has been obtained.
Journal Article

Reanalysis of Linear Dynamic Systems using Modified Combined Approximations with Frequency Shifts

2016-04-05
2016-01-1338
Weight reduction is very important in automotive design because of stringent demand on fuel economy. Structural optimization of dynamic systems using finite element (FE) analysis plays an important role in reducing weight while simultaneously delivering a product that meets all functional requirements for durability, crash and NVH. With advancing computer technology, the demand for solving large FE models has grown. Optimization is however costly due to repeated full-order analyses. Reanalysis methods can be used in structural vibrations to reduce the analysis cost from repeated eigenvalue analyses for both deterministic and probabilistic problems. Several reanalysis techniques have been introduced over the years including Parametric Reduced Order Modeling (PROM), Combined Approximations (CA) and the Epsilon algorithm, among others.
Journal Article

Computational Efficiency Improvements in Topography Optimization Using Reanalysis

2016-04-05
2016-01-1395
To improve fuel economy, there is a trend in automotive industry to use light weight, high strength materials. Automotive body structures are composed of several panels which must be downsized to reduce weight. Because this affects NVH (Noise, Vibration and Harshness) performance, engineers are challenged to recover the lost panel stiffness from down-gaging in order to improve the structure borne noise transmitted through the lightweight panels in the frequency range of 100-300 Hz where most of the booming and low medium frequency noise occurs. The loss in performance can be recovered by optimized panel geometry using beading or damping treatment. Topography optimization is a special class of shape optimization for changing sheet metal shapes by introducing beads. A large number of design variables can be handled and the process is easy to setup in commercial codes. However, optimization methods are computationally intensive because of repeated full-order analyses.
Journal Article

Multi-Objective Decision Making under Uncertainty and Incomplete Knowledge of Designer Preferences

2011-04-12
2011-01-1080
Multi-attribute decision making and multi-objective optimization complement each other. Often, while making design decisions involving multiple attributes, a Pareto front is generated using a multi-objective optimizer. The end user then chooses the optimal design from the Pareto front based on his/her preferences. This seemingly simple methodology requires sufficient modification if uncertainty is present. We explore two kinds of uncertainties in this paper: uncertainty in the decision variables which we call inherent design problem (IDP) uncertainty and that in knowledge of the preferences of the decision maker which we refer to as preference assessment (PA) uncertainty. From a purely utility theory perspective a rational decision maker maximizes his or her expected multi attribute utility.
Journal Article

Efficient Probabilistic Reanalysis and Optimization of a Discrete Event System

2011-04-12
2011-01-1081
This paper presents a methodology to evaluate and optimize discrete event systems, such as an assembly line or a call center. First, the methodology estimates the performance of a system for a single probability distribution of the inputs. Probabilistic Reanalysis (PRRA) uses this information to evaluate the effect of changes in the system configuration on its performance. PRRA is integrated with a program to optimize the system. The proposed methodology is dramatically more efficient than one requiring a new Monte Carlo simulation each time we change the system. We demonstrate the approach on a drilling center and an electronic parts factory.
Journal Article

Reliability and Cost Trade-Off Analysis of a Microgrid

2018-04-03
2018-01-0619
Optimizing the trade-off between reliability and cost of operating a microgrid, including vehicles as both loads and sources, can be a challenge. Optimal energy management is crucial to develop strategies to improve the efficiency and reliability of microgrids, as well as new communication networks to support optimal and reliable operation. Prior approaches modeled the grid using MATLAB, but did not include the detailed physics of loads and sources, and therefore missed the transient effects that are present in real-time operation of a microgrid. This article discusses the implementation of a physics-based detailed microgrid model including a diesel generator, wind turbine, photovoltaic array, and utility. All elements are modeled as sources in Simulink. Various loads are also implemented including an asynchronous motor. We show how a central control algorithm optimizes the microgrid by trying to maximize reliability while reducing operational cost.
Journal Article

A Re-Analysis Methodology for System RBDO Using a Trust Region Approach with Local Metamodels

2010-04-12
2010-01-0645
A simulation-based, system reliability-based design optimization (RBDO) method is presented that can handle problems with multiple failure regions and correlated random variables. Copulas are used to represent the correlation. The method uses a Probabilistic Re-Analysis (PRRA) approach in conjunction with a trust-region optimization approach and local metamodels covering each trust region. PRRA calculates very efficiently the system reliability of a design by performing a single Monte Carlo (MC) simulation per trust region. Although PRRA is based on MC simulation, it calculates “smooth” sensitivity derivatives, allowing therefore, the use of a gradient-based optimizer. The PRRA method is based on importance sampling. It provides accurate results, if the support of the sampling PDF contains the support of the joint PDF of the input random variables. The sequential, trust-region optimization approach satisfies this requirement.
Technical Paper

A Methodology of Design for Fatigue Using an Accelerated Life Testing Approach with Saddlepoint Approximation

2019-04-02
2019-01-0159
We present an Accelerated Life Testing (ALT) methodology along with a design for fatigue approach, using Gaussian or non-Gaussian excitations. The accuracy of fatigue life prediction at nominal loading conditions is affected by model and material uncertainty. This uncertainty is reduced by performing tests at a higher loading level, resulting in a reduction in test duration. Based on the data obtained from experiments, we formulate an optimization problem to calculate the Maximum Likelihood Estimator (MLE) values of the uncertain model parameters. In our proposed ALT method, we lift all the assumptions on the type of life distribution or the stress-life relationship and we use Saddlepoint Approximation (SPA) method to calculate the fatigue life Probability Density Functions (PDFs).
X