Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Effect of Variable Geometry Turbine (VGT) on Diesel Engine and Vehicle System Transient Response

2001-03-05
2001-01-1247
Variable geometry turbines (VGT) are of particular interest to advanced diesel powertrains for future conventional trucks, since they can dramatically improve system transient response to sudden changes in speed and load, characteristic of automotive applications. VGT systems are also viewed as the key enabler for the application of the EGR system for reduction of heavy-duty diesel emissions. This paper applies an artificial neural network methodology to VGT modeling in order to enable representation of the VGT characteristics for any blade (nozzle) position. Following validation of the ANN model of the baseline, fixed geometry turbine, the VGT model is integrated with the diesel engine system. The latter is linked to the driveline and the vehicle dynamics module to form a complete, high-fidelity vehicle simulation.
Technical Paper

Simulation Study of a Series Hydraulic Hybrid Propulsion System for a Light Truck

2007-10-30
2007-01-4151
The global energy situation, the dependence of the transportation sector on fossil fuels, and a need for rapid response to the global warming challenge, provide a strong impetus for development of fuel efficient vehicle propulsion. The task is particularly challenging in the case of trucks due to severe weight/size constraints. Hybridization is the only approach offering significant breakthroughs in near and mid-term. In particular, the series configuration decouples the engine from the wheels and allows full flexibility in controlling the engine operation, while the hydraulic energy conversion and storage provides exceptional power density and efficiency. The challenge stems from a relatively low energy density of the hydraulic accumulator, and this provides part of the motivation for a simulation-based approach to development of the system power management. The vehicle is based on the HMMWV platform, a 4×4 off-road truck weighing 5112 kg.
Technical Paper

Series Hydraulic Hybrid Propulsion for a Light Truck - Optimizing the Thermostatic Power Management

2007-09-16
2007-24-0080
The global energy situation, the dependence of the transportation sector on fossil fuels, and a need for rapid response to the global warming challenge, provide a strong impetus for development of fuel efficient vehicle propulsion. The task is particularly challenging in the case of trucks due to severe weight/size constraints. Hybridization is the only approach offering significant breakthroughs in near and mid-term. In particular, the series configuration decouples the engine from the wheels and allows full flexibility in controlling the engine operation, while the hydraulic energy conversion and storage provides exceptional power density and efficiency. The challenge stems from a relatively low energy density of the hydraulic accumulator, and this provides part of the motivation for a simulation-based approach to development of the system power management. The vehicle is a 4×4 truck weighing 5112 kg and intended for both on- and off-road use.
Technical Paper

Design Under Uncertainty and Assessment of Performance Reliability of a Dual-Use Medium Truck with Hydraulic-Hybrid Powertrain and Fuel Cell Auxiliary Power Unit

2005-04-11
2005-01-1396
Medium trucks constitute a large market segment of the commercial transportation sector, and are also used widely for military tactical operations. Recent technological advances in hybrid powertrains and fuel cell auxiliary power units have enabled design alternatives that can improve fuel economy and reduce emissions dramatically. However, deterministic design optimization of these configurations may yield designs that are optimal with respect to performance but raise concerns regarding the reliability of achieving that performance over lifetime. In this article we identify and quantify uncertainties due to modeling approximations or incomplete information. We then model their propagation using Monte Carlo simulation and perform sensitivity analysis to isolate statistically significant uncertainties. Finally, we formulate and solve a series of reliability-based optimization problems and quantify tradeoffs between optimality and reliability.
Journal Article

Assessing the Regeneration Potential for a Refuse Truck Over a Real-World Duty Cycle

2012-04-16
2012-01-1030
The majority of a refuse truck collection cycle consists of frequent Stop and Go events while moving from one household to another. The nature of this driving mission creates the opportunity to reduce fuel consumption by capturing and re-using the kinetic energy normally wasted during braking. This paper includes the evaluation of the brake energy available for regeneration from the conventional drivetrain; the description of the impact of the vehicle variable mass and auxiliary loads; a model validation over a real-world duty cycle; and the potential for an increase in fuel efficiency through hybridization of the drivetrain. The Hydraulic Hybrid (HH) technology is selected since it has a large power density.
X