Refine Your Search

Topic

Search Results

Journal Article

Evaluation of Thermal Roll Formed Thick Composite Panels Using Surface NDT Methods

2017-09-19
Abstract Inspection of Composite panels is vital to the assessment of their ability to be fit for purpose. Conventional methods such as X-ray CT and Ultrasonic scanning can be used, however, these are often expensive and time consuming processes. In this paper we investigate the use of off-the-shelf Non-Destructive Test, NDT, equipment utilizing Fringe projection hardware and open source software to rapidly evaluate a series of composite panels. These results are then verified using destructive analysis of the panels to prove the reliability of the rapid NDT methods for use with carbon composite panels. This process allows us to quickly identify regions of geometric intolerance or formed defects without the use of expensive sub-surface scanning systems, enabling a fast and cost effective initial part evaluation system. The focus of this testing series is on 6mm thick pre-preg carbon-epoxy composite laminates that have been laid up using AFP and formed using TRF.
Journal Article

Effects of Reflux Temperature and Molarity of Acidic Solution on Chemical Functionalization of Helical Carbon Nanotubes

2017-09-19
Abstract The use of nanomaterials and nanostructures have been revolutionizing the advancements of science and technology in various engineering and medical fields. As an example, Carbon Nanotubes (CNTs) have been extensively used for the improvement of mechanical, thermal, electrical, magnetic, and deteriorative properties of traditional composite materials for applications in high-performance structures. The exceptional materials properties of CNTs (i.e., mechanical, magnetic, thermal, and electrical) have introduced them as promising candidates for reinforcement of traditional composites. Most structural configurations of CNTs provide superior material properties; however, their geometrical shapes can deliver different features and characteristics. As one of the unique geometrical configurations, helical CNTs have a great potential for improvement of mechanical, thermal, and electrical properties of polymeric resin composites.
Journal Article

Stall Mitigation and Lift Enhancement of NACA 0012 with Triangle-Shaped Surface Protrusion at a Reynolds Number of 105

2019-11-21
Abstract Transient numerical simulations are conducted over a NACA 0012 airfoil with triangular protrusions at a Reynolds number (Re) of 100000 using the γ-Reθ transition Shear Stress Transport (SST) turbulence model. Protrusions of heights 0.5%c, 1%c, and 2%c are placed at one of the three locations, viz, the leading edge (LE), 5%c on the suction surface, and 5%c on the pressure surface, while the angle of attack (AOA) is varied between 0° and 20°. Results obtained from the time-averaged solution of the unsteady Navier-Stokes equation indicate that the smaller protrusion placed at 5%c on the suction surface improves the post-stall lift coefficient by up to 59%, without altering the pre-stall characteristics. The improvement in time-averaged lift coefficients comes with enhanced flow unsteadiness due to vigorous vortex shedding.
Journal Article

Mathematical Model of Heat-Controlled Accumulator (HCA) for Microgravity Conditions

2020-01-20
Abstract It is reasonable to use a two-phase heat transfer loop (TPL) in a thermal control system (TCS) of spacecraft with large heat dissipation. One of the key elements of TPL is a heat-controlled accumulator (HCA). The HCA represents a volume which is filled with vapor and liquid of a single working fluid without bellows. The pressure in a HCA is controlled by the heater. The heat and mass transfer processes in the HCA can proceed with a significant nonequilibrium. This has implications on the regulation of TPL. This article presents a mathematical model of nonequilibrium heat and mass transfer processes in an HCA for microgravity conditions. The model uses the equations of mass and energy conservation separately for the vapor and liquid phases. Interfacial heat and mass transfer is also taken into account. It proposes to use the convective component k for the level of nonequilibrium evaluation.
Journal Article

Parametric Studies on Airfoil-Boundary Layer Ingestion Propulsion System

2020-03-11
Abstract From the fact that a propulsor consumes less power for a given thrust if the inlet air is slower, simulations are conducted for a propulsor imposed behind an airfoil as ideal boundary layer ingestion (BLI) propulsor to stand on the benefits of this configuration from the point of view of power and efficiency and to get a closer look on the mutual interaction between them. This interaction is quantified by the impact on three main sets of parameters, namely, power consumption, boundary layer properties, and airfoil performance. The position and size of the propulsor have great influence on the flow around the airfoil. Parametric studies are carried out to understand their influence. BLI propulsor directly affects the power saving and all of the pressure-dependent parameters, including lift and drag. For the present case, power saving reached 14.4% compared to the propeller working in freestream.
Journal Article

Three-Dimensional Thermal Study on Lithium-Ion Batteries in a Hybrid Aircraft: Numerical and Experimental Investigations

2020-10-19
Abstract The range of an aircraft is determined by the amount of energy that its batteries can store. Today, larger batteries are used to increase the range of electric vehicles, although energy efficiency decreases as the weight of the vehicles increases. Among the elements, lithium (Li) is the lightest and has the highest electrochemical potential. Therefore, the use of Li-ion batteries is recommended for hybrid aircraft. In addition, Li-ion batteries are the most common type of battery that is used in portable electronic devices such as smartphones, tablets, and laptops. However, Li-ion batteries may explode due to temperature. Therefore, the thermal analysis of Li-ion batteries was investigated both experimentally and numerically. Li-ion batteries were connected in series (the number is 9). Noboru’s theory of heat generation was discussed in the estimation of energy data.
Journal Article

Carbon Fiber/Epoxy Mold with Embedded Carbon Fiber Resistor Heater - Case Study

2018-04-07
Abstract The paper presents a complete description of the design and manufacturing of a Carbon Fiber/epoxy mold with an embedded Carbon Fiber resistor heater, and the mold performances in terms of its surface temperature distribution and thermal deformations resulting from the heating. The mold was designed for manufacturing aileron skins from Vacuum Bag Only prepreg cured at 135°C. The glass transition temperature of the used resin-hardener system was about 175°C. To ensure homogenous temperature of the mold working surface in the course of curing, the Carbon Fiber heater was embedded in a layer of a highly heat-conductive cristobalite/epoxy composite, forming the core of the mold shell. Because the cristobalite/epoxy composite displayed much higher thermal expansion than CF/epoxy did, thermal stresses could arise due to this discrepancy in the course of heating.
Journal Article

Lightweight Carbon Composite Chassis for Engine Start Lithium Batteries

2018-03-07
Abstract The supersession of metallic alloys with lightweight, high-strength composites is popular in the aircraft industry. However, aviation electronic enclosures for large format batteries and high power conversion electronics are still primarily made of aluminum alloys. These aluminum enclosures have attractive properties regrading structural integrity for the heavy internal parts, electromagnetic interference (EMI) suppression, electrical bonding for the internal cells, and/or electronics and failure containment. This paper details a lightweight carbon fiber composite chassis developed at Meggitt Sensing Systems (MSS) Securaplane, with a copper metallic mesh co-cured onto the internal surfaces resulting in a 50% reduction in weight when compared to its aluminum counterpart. In addition to significant weight reduction, it provides equal or improved performance with respect to EMI, structural and flammability performance.
Journal Article

Technological Stability of the Liner in a Separable Metal Composite Pressure Vessel

2020-04-21
Abstract The article considers one of the possible mechanisms of loading the solidity of a cylindrical metal composite high-pressure vessel (MC HPV). This mechanism manifests itself as delamination of a thin-walled metal shell (liner) from a more rigid composite shell causing local buckling. A similar effect can be detected in the manufacturing process of MC HPV, when the composite shell is formed by winding with tension a carbon fiber-reinforced plastic tape on the liner. Pressure transfer from the composite shell to the liner is carried out by the method of temperature analogy, that is, by cooling the composite shell, thermally insulated from the liner. To solve the problem of externally confined liner local buckling an approach is proposed, which is based on three points: the introduction of local technological deviations inherent in actual structures, the determination of the general stress-strain state, and a real-time deforming.
Journal Article

Dynamic Particle Generation/Shedding in Lubricating Greases Used in Aerospace Applications

2018-08-03
Abstract The purpose of this study is to examine the phenomenon of Dynamic Particle Generation in lubricating greases that are used in a variety of critical Aerospace mechanisms. Particle Generation occurs in bearings, ball screws, and other mechanical devices where dynamic conditions are present. This should not be confused with outgassing as particle generation is unrelated to the pressure effects on a system. This is a critical factor in many systems as particle generation can contaminate systems or processes causing them to fail. These failures can lead to excessive costs, production failure, and equipment damage. In this study, several greases made from Multiplyalkylated Cyclopentane and Perfluoropolyether base fluids were tested to evaluate their particle generation properties. This particle generation phenomenon was studied using a custom test rig utilizing a high precision cleanroom ball-screw to simulate true application conditions.
Journal Article

Power Quality Test Data Analysis for Aircraft Subsystem

2018-12-21
Abstract Aircraft subsystem development involves various combinations of testing and qualification activities to realize a flight-worthy system. The subsystem needs to be verified for a massive number of customer requirements. Power quality (PQ) testing is also an important testing activity carried out as part of the environmental qualification test. It is intended to verify the functionality of subsystems with various kinds of power disturbances and to determine the ability of a subsystem to withstand PQ disturbances. The subsystem being designed should be reliable enough to handle PQ anomalies. A PQ test results in an enormous amount of data for analysis with millions of data samples depending on the test and can be identified as big data. The engineer needs to analyze each set of test data as part of post-processing to ensure the power disturbances during testing are as per the standard requirements and that the functional performance of the subsystem is met.
Journal Article

Improve Heat Resistance of Composite Engine Cowlings Using Ceramic Coating Materials, Experimental Design and Testing

2018-06-04
Abstract A large amount of heat generated in the engineering compartment in a hovering helicopter may lead to premature degradation of inner skin of its engine cowling and cause serious failure on the engine cowling. This study proposes a solution of improving heat resistance of the helicopter engine cowlings by replacing the currently used intumescent coating with a ceramic coating material, Cerakote C-7700Q. Oven and flame tests were designed and conducted to evaluate the heat resistance of Cerakote C-7700Q. The test results show that the currently used painting scheme of the engine cowlings failed the 220°C oven test while after replacing the epoxy seal coat with the Cerakote, the new painting system passed the 220°C test in regards to painting bubbling. Based on that, a new painting scheme with C-7700Q implemented was recommended.
Journal Article

Study on the Influence of Mass Flow Rate over a National Advisory Committee for Aeronautics 6321 Airfoil Using Improved Blowing and Suction System for Effective Boundary Layer Control

2021-08-06
Abstract The numerical analysis of the three-dimensional (3D) flow over a National Advisory Committee for Aeronautics (NACA) 6321 airfoil to evaluate the mass flow rate by using a novel method Improved Blowing and Suction System (IBSS) to control the boundary layer is presented in this study. Analysis is performed based on 3D Reynolds-Averaged Navier-Stokes (RANS) equation with a K-omega SST solver. The aerodynamic performance of the NACA 6321 is analyzed at a Mach number of 0.10 with three different mass flow rates, namely, 0.08 kg/s, 0.10 kg/s, and 0.12 kg/s. From the study, it is seen that when the mass flow rate decreased, the aerodynamics performance also reduced, and the aerodynamic performance improved with the increase in mass flow rate.
Journal Article

Characterization of Particulate Resulting from Oil Contamination of Aircraft Bleed Air

2020-09-14
Abstract Possible oil contamination of aircraft bleed air is an ongoing operational issue for commercial aircraft. A sensitive and reliable method to detect contamination, especially at very low levels, has been elusive due, in part, to the lack of information about the physical nature of oil that results when entrained in the bleed air by an engine compressor. While it was expected that high shear rates in the compressors would result in very finely dispersed particles, detailed data on the size characteristics of these droplets were not available, making it difficult to develop reliable detection techniques. The goal of the reported research was to collect experimental data to provide this information. The concentration and size distribution of particles were measured for bleed air with different rates of controlled oil contamination under various engine operating conditions.
Journal Article

Design and Analysis of Aircraft Lift Bag

2021-02-12
Abstract Aircraft lift bag is the equipment used for the recovery of an aircraft and is considered as a lifting equipment. Boeing 737 is a domestic aircraft considered for designing this bag. The aircraft lift bag is made of composite material, and the most widely used materials are nylon and neoprene. A composite material is used to make the bag lightweight and easy to handle. For calculation of properties and the engineering constant of the respective composite materials, micromechanics approach is used, in which the method of Representative Volume Element (RVE) is taken into consideration. The loading and boundary conditions are the exact replica of the working conditions. The operation of this bag is completely pneumatic. The stresses induced in the bag are analyzed in finite element software and are compared with the calculated theoretical values. CATIA is used to model the bag, and ABAQUS is used for the finite element calculations.
Journal Article

Understanding the Impact of Standardized SAE Waveform Parameter Variation on Artificial Lightning Plasma, Specimen Loading, and Composite Material Damage

2020-02-18
Abstract Previous works have established strategies to model artificial test lightning plasma with specific waveform parameters and use the predicted plasma behavior to estimate test specimen damage. To date no computational works have quantified the influence of varying the waveform parameters on the predicted plasma behavior and resulting specimen damage. Herein test standard Waveform B has been modelled and the waveform parameters of “waveform peak,” “rise time,” and “time to reach the post-peak value” have been varied. The plasma and specimen behaviors have been modelled using the Finite Element (FE) method (a Magnetohydrodynamic FE multiphysics model for the plasma, a FE thermal-electric model for the specimen). For the test arrangements modelled herein, it has been found that “peak current” is the key parameter influencing plasma properties and specimen damage.
Journal Article

Application of Taguchi-Based Grey System for Multi Aspects Optimization on Wire Electric Discharge Machining of Aluminum-Graphene Nanoplatelets Composites

2021-10-11
Abstract Aluminum Metal Matrix Composite (AMMC) materials have loftier individualities and are known as an alternative material for a range of aerospace and automotive engineering applications. Reinforcement inclusion makes the components tougher, resulting in low performance of machining by traditional conservative machining practices. The present study presents a detailed review of the machinability of AMMC (Pure Aluminum + Graphene nanoplatelets) using Wire Electric Discharge Machining (WEDM). For WEDM of AMMC, a multi-objective optimization method is proposed to evaluate possible machining parameters in order to achieve better machining efficiency. Taguchi’s approach to the design of experiments is used to organize the experiments. For performing experiments, an L27 orthogonal array was selected. Five input process variables were considered for this study. The Grey Relational Analysis (GRA) is used to achieve the best features of multi-performance machining.
Journal Article

Prognostics and Machine Learning to Assess Embedded Delamination Tolerance in Composites

2022-08-26
Abstract Laminated composites are extensively used in the aerospace industry. However, structures made from laminated composites are highly susceptible to delamination failures. It is therefore imperative to consider a structure tolerance to delamination during design and operation. Hybrid composites with laminas containing different fibers were used earlier in laminates to achieve certain benefits in strength, stiffness, and buckling. However, the concept of mixing laminas with different fibers was not explored by researchers to enhance delamination tolerance levels. This article examines the above aspect of hybridization by employing machine learning algorithms and proposes a reliable method of analysis to study delamination, which is crucial to ensure the safety of airframe composite panels.
Journal Article

Performance Study of Novel Compressor Blades in a Two-Dimensional Cascade—Transonic Regime

2021-09-07
Abstract Passengers would always like to reach their destinations with minimum commute time. Generating a higher thrust is a necessity. This implies that the turbomachinery associated with the power plant has to rotate faster and with higher efficiencies. However, high rotational speeds, mainly in the transonic regime, often lead to boundary layer separation, shocks, compressor stall, and surge. The current investigation is an attempt to reduce the abovementioned phenomena. It involves the performance study of a smoothened controlled diffusion airfoil (CDA) blade that has been optimized by “Multi-Objective Genetic Algorithm” (MOGA) by altering maximum camber location and stagger angle. Inlet pressure is varied from 15 kPa to 30 kPa and the angle of attack ranging from 40.4° to 56.4°. C48-S16-BS1 is validated and considered as the baseline profile, and all other blades are collated to this.
Journal Article

Numerical Analysis of a Separable Metal Composite Pressure Vessel

2022-08-09
Abstract This article presents a numerical solution to the problem of delamination in a separable Metal Composite High-Pressure Vessel (MC HPV). This problem is associated with local buckling of the inner metal shell (liner) surrounded by an outer rigid composite shell. A geometrically and physically nonlinear MC HPV deformation model is constructed considering the three-dimensional stress-strain state, real-time mode, and technological deviations inherent in real vessel designs. The model combines the deformation of the vessel end domes and the cylindrical part. A unilateral constraint is believed to exist on the interface between the liner and the composite shell, allowing the liner to delaminate from the latter when bending. Calculations are performed using the finite element method in the LS-DYNA software package in a dynamic formulation. The vessel is divided into solid finite elements such as TSHELL and SOLID.
X