Refine Your Search

Topic

Search Results

Journal Article

Introducing the Modified Tire Power Loss and Resistant Force Regarding Longitudinal Slip

2018-04-18
Abstract Investigation of vehicle resistant forces and power losses is of crucial importance owing to current state of energy consumption in transport sector. Meanwhile, considerable portion of resistant forces in a ground vehicle is traced back to tires. Pneumatic tires are known to be a source of energy dissipation as a consequence of their viscoelastic nature. The current study aims to provide a modification to tire resistance by considering the power loss in a tire due to longitudinal slip. The modified tire resistance is comprised of rolling resistance and a newly introduced resistance caused by tire slip, called slip resistance. The physical model is chosen for parameters sensitivity study since the tractive force is described in this model via tangible physical parameters, e.g. tire tangential stiffness, coefficient of friction, and contact patch length.
Journal Article

Multi-Chamber Tire Concept for Low Rolling-Resistance

2019-04-08
Abstract Rolling-resistance is leading the direction of numerous tire developments due to its significant effect on fuel consumption and CO2 emissions considering the vehicles in use globally. Many attempts were made to reduce rolling-resistance in vehicles, but with no or limited success due to tire complexity and trade-offs. This article investigates the concept of multiple chambers inside the tire as a potential alternative solution for reducing rolling-resistance. To accomplish that, novel multi-chamber designs were introduced and numerically simulated through finite-element (FE) modeling. The FE models were compared against a standard design as the baseline. The influences on rolling-resistance, grip, cornering, and mechanical comfort were studied. The multi-chambers tire model reduced rolling-resistance considerably with acceptable trade-offs. Independent air volumes isolating tread from sidewalls would maintain tire’s profile effectively.
Journal Article

U.S. Light-Duty Vehicle Air Conditioning Fuel Use and Impact of Solar/Thermal Control Technologies

2018-12-11
Abstract To reduce fuel consumption and carbon dioxide (CO2) emissions from mobile air conditioning (A/C) systems, “U.S. Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards” identified solar/thermal technologies such as solar control glazings, solar reflective paint, and active and passive cabin ventilation in an off-cycle credit menu. National Renewable Energy Laboratory (NREL) researchers developed a sophisticated analysis process to calculate U.S. light-duty A/C fuel use that was used to assess the impact of these technologies, leveraging thermal and vehicle simulation analysis tools developed under previous U.S. Department of Energy projects. Representative U.S. light-duty driving behaviors and weighting factors including time-of-day of travel, trip duration, and time between trips were characterized and integrated into the analysis.
Journal Article

Adaptive Transmission Shift Strategy Based on Online Characterization of Driver Aggressiveness

2018-06-04
Abstract Commercial vehicles contribute to the majority of freight transportation in the United States. They are also significant fuel consumers, with over 23% of fuel used in transportation in the United States. The gas price volatility and increasingly stringent regulation on greenhouse-gas emissions have driven manufacturers to adopt new fuel-efficient technologies. Among others, an advanced transmission control strategy, which can provide tangible improvement with low incremental cost. In the commercial sector, individual drivers have little or no interest in vehicle fuel economy, contrary to fleet owners. Aggressive driving behavior can greatly increase the real-world vehicle fuel consumption. However, the effectiveness of transmission calibration to match the shift strategy to the driving characteristics is still a challenge.
Journal Article

Implementation and Optimization of a Variable-Speed Coolant Pump in a Powertrain Cooling System

2020-02-07
Abstract This study investigates methods to precisely control a coolant pump in an internal combustion engine. The goal of this research is to minimize power consumption while still meeting optimal performance, reliability and durability requirements for an engine at all engine-operating conditions. This investigation achieves reduced fuel consumption, reduced emissions, and improved powertrain performance. Secondary impacts include cleaner air for the earth, reduced operating costs for the owner, and compliance with US regulatory requirements. The study utilizes mathematical modeling of the cooling system using heat transfer, pump laws, and boiling analysis to set limits to the cooling system and predict performance changes.
Journal Article

Combined Battery Design Optimization and Energy Management of a Series Hybrid Military Truck

2018-10-31
Abstract This article investigates the fuel savings potential of a series hybrid military truck using a simultaneous battery pack design and powertrain supervisory control optimization algorithm. The design optimization refers to the sizing of the lithium-ion battery pack in the hybrid configuration. The powertrain supervisory control optimization determines the most efficient way to split the power demand between the battery pack and the engine. Despite the available design and control optimization techniques, a generalized mathematical formulation and solution approach for combined design and control optimization is still missing in the literature. This article intends to fill that void by proposing a unified framework to simultaneously optimize both the battery pack size and power split control sequence. This is achieved through a combination of genetic algorithm (GA) and Pontryagin’s minimum principle (PMP) where the design parameters are integrated into the Hamiltonian function.
Journal Article

Computationally Analyzing the Impact of Spherical Depressions on the Sides of Hatchback Cars

2021-01-19
Abstract Fuel consumption is at an all-time high, with crude oil set to get depleted in the next two decades. Drag force is one of the major components responsible for decreasing mileage and thus increasing fuel consumption in vehicles. Using passive modifications such as spherical depressions on the body surface, aerodynamic drag experienced by passenger vehicles can be significantly reduced. Spherical depressions are designed to delay flow separation, following which the wake size is reduced, resulting in a decrease in drag force. In this study, computer-aided design (CAD) models of generalized lightweight vehicles are made with dimples at the sides of the car, having a diameter of 60 mm and a center-to-center distance of 90 mm. Several models are created having depression aspect ratios (ARs) of 2, 4, 6, and 8, and each model is simulated to velocities of 22 m/s, 24 m/s, 26 m/s, 28 m/s, and 30 m/s.
Journal Article

A Novel Approach to Energy Management Strategy for Hybrid Electric Vehicles

2021-02-25
Abstract The principal issue in choosing an energy management strategy (EMS) for hybrid electric vehicles (HEVs) has been the way of determining the optimal share of electric energy in hybrid drive. In this article, a novel EMS is proposed that, along with maximum engine efficiency in the hybrid drive, can optimize the share of battery energy for the maximum efficiency of vehicle power train expanded with an imaginary power plant that, by delivering the electric energy to a grid, feeds the vehicle battery. It is proved that the expanded power train efficiency has the local maximum for a wide range of wheel power demand. The relation between the wheel power demand in hybrid drive, the share of battery energy, and the maximum efficiency of the expanded power train is conducted offline. Downloaded to the onboard control system, it enables the operation with the instantaneously optimal share of battery energy and the control system to operate with the low computational load.
Journal Article

Connected Eco-approach and Departure System for Diesel Trucks

2021-02-26
Abstract Diesel trucks play a crucial role in transportation activity and a major contributor to fuel consumption and air pollution. To improve the energy efficiency of diesel trucks, we develop a truck eco-approach and departure (EAD) system based on Signal Phase and Timing (SPaT) message from signal controllers and road grade information along the path. The proposed model consists of two levels—the lower level for powertrain-based fuel consumption estimation and the upper level for optimal trajectory planning. The powertrain model is designed for a diesel engine with a six-gear transmission and well calibrated using on-board Electronic Control Unit (ECU) data. The trajectory planning model is formulated as a shortest path problem with the combination of time, distance, and speed as the state on each node and fuel consumption rate as the cost on state transition.
Journal Article

Multipurpose Longitudinal Distance-Based Driver for On-Road and Off-Road Vehicles

2021-09-07
Abstract Driving skills and, more in general, driver’s behavior may have a major impact on vehicle performances. They can affect not only the fuel consumption of the machine but, at the same time, also its productivity and the durability of many mechanical, electronic, and hydraulic components equipped on the vehicle. In this article, a model, able to reproduce different driver’s approaches to the machine, is shown. The longitudinal driver model has been developed in Matlab/Simulink and, firstly, employed on buses and trucks applications; then it has been also exported into a wheel loader plant model designed in Simcenter AMESim. The article is focused on how the driver model, integrated into the wheel loader plant model, can simulate custom cycles with a different driving style (high/low aggressiveness). It allows, on one hand, to emulate a real driver behavior and, on the other hand, to increase simulation repeatability and reproducibility.
Journal Article

Applying a Driven Turbocharger with Turbine Bypass to Improve Aftertreatment Warm-Up and Diesel Nitrous Oxides Conversion

2021-09-23
Abstract As emissions regulations continue to tighten, both from lower imposed limits of pollutants, such as nitrous oxides (NOx), and in-use and real-world testing, the importance of quickly heating the aftertreatment to operating temperature during a cold start, as well as maintaining this temperature during periods of low engine load, is of increasing importance. Perhaps the best method of providing the necessary heating of the aftertreatment is to direct hot exhaust gasses to it directly from the engine. For heavy-duty diesel engines that utilize turbochargers, this is achieved by fully bypassing the exhaust flow around the turbine directly to the aftertreatment. However, this disables a conventional turbocharger, limiting engine operation to near-idle conditions during the bypass period.
Journal Article

Finite Element Thermo-Structural Methodology for Investigating Diesel Engine Pistons with Thermal Barrier Coating

2018-12-14
Abstract Traditionally, in combustion engine applications, metallic materials have been widely employed due to their properties: castability and machinability with accurate dimensional tolerances, good mechanical strength even at high temperatures, wear resistance, and affordable price. However, the high thermal conductivity of metallic materials is responsible for consistent losses of thermal energy and has a strong influence on pollutant emission. A possible approach for reducing the thermal exchange requires the use of thermal barrier coating (TBC) made by materials with low thermal conductivity and good thermo-mechanical strength. In this work, the effects of a ceramic coating for thermal insulation of the piston crown of a car diesel engine are investigated through a numerical methodology based on finite element analysis. The study is developed by considering firstly a thermal analysis and then a thermo-structural analysis of the component.
Journal Article

Response Surface Methodology (RSM) in Optimization of Performance and Exhaust Emissions of RON 97, RON 98, and RON 100 (Motor Gasoline) and AVGAS 100LL (Aviation Gasoline) in Lycoming O-320 Engine

2019-08-19
Abstract Federal Aviation Administration (FAA)’s 20 years of research and development with 200 unleaded blends and full-scale engine tests on 45 high-octane unleaded blends has not found a “drop-in” unleaded replacement for aviation gasoline (AVGAS) 100 low lead (100LL) fuel. In this study, analysis of compatibility via optimization of Lycoming O-320 engine fuelled with RON 97, RON 98, RON 100, and AVGAS was conducted using the Response Surface Methodology (RSM). Test fuels were compositionally characterized based on Gas Chromatography (GC) analysis and were categorized based on types of Hydrocarbon (HC). Basic fuel properties of fuels in this research were analyzed and recorded. For optimization analysis, engine speed and fuel were considered as the input parameters.
Journal Article

1D Numerical and Experimental Investigations of an Ultralean Pre-Chamber Engine

2019-11-19
Abstract In recent years, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations. With this solution, in fact, it is possible to simultaneously reduce NOx raw emissions and fuel consumption due to decreased heat losses, higher thermodynamic efficiency, and enhanced knock resistance. However, the real applicability of this technique is strongly limited by the increase in cyclic variation and the occurrence of misfire, which are typical for the combustion of homogeneous lean air/fuel mixtures. The employment of a Pre-Chamber (PC), in which the combustion begins before proceeding in the main combustion chamber, has already shown the capability of significantly extending the lean-burn limit. In this work, the potential of an ultralean PC SI engine for a decisive improvement of the thermal efficiency is presented by means of numerical and experimental analyses.
Journal Article

Optimization of Intake Port and Pentroof Angle for Simultaneous Reduction of Fuel Consumption and Exhaust Emissions in a Gasoline Direct Injection Engine

2020-02-04
Abstract This article aims to identify the best combination of intake port angle (IPA) and cylinder head pentroof angle (PA) of a gasoline direct injection (GDI) engine to achieve a simultaneous reduction in the fuel consumption and the exhaust emissions using computational fluid dynamics (CFD) and optimization techniques. The present study is carried out on a single-cylinder, four-stroke GDI engine. The design space is bound by the range of the IPA (35°, 80°) and the PA (5°, 20°). The initial data set consists of 80 design points, which are generated using the uniform Latin hypercube (ULH) algorithm. CFD simulations were carried out at all the points in the initial data set using CONVERGE at engine speed of 2,000 rev/min and the overall equivalence ratio of 0.7 ± 0.05.
Journal Article

An Investigation of the Effects of the Piston Bowl Geometries of a Heavy-Duty Engine on Performance and Emissions Using Direct Dual Fuel Stratification Strategy, and Proposing Two New Piston Profiles

2020-03-16
Abstract Direct dual fuel stratification (DDFS) strategy benefits the advantages of the RCCI and PPC strategies simultaneously. DDFS has improved control over the heat release rate, by injecting a considerable amount of fuel near TDC, compared to RCCI. In addition, the third injection (near TDC) is diffusion-limited. Consequently, piston bowl geometry directly affects the formation of emissions. The modified piston geometry was developed and optimized for RCCI by previous scholars. Since all DDFS experimental tests were performed with the modified piston profile, the other piston profiles need to be investigated for this strategy. In this article, first, a comparative study between the three conventional piston profiles, including the modified, stock, and scaled pistons, was performed. Afterward, the gasoline injector position was shifted to the head cylinder center for the stock piston. NOX emissions were improved; however, soot was increased slightly.
Journal Article

Effects of Stepped-Lip Combustion System Design and Operating Parameters on Turbulent Flow Evolution in a Diesel Engine

2020-01-16
Abstract Interactions between fuel sprays and stepped-lip diesel piston bowls can produce turbulent flow structures that improve efficiency and emissions, but the underlying mechanisms are not well understood. Recent experimental and simulation efforts provide evidence that increased efficiency and reduced smoke emissions coincide with the formation of long-lived, energetic vortices during the mixing-controlled portion of the combustion event. These vortices are believed to promote fuel-air mixing, increase heat-release rates, and improve air utilization, but they become weaker as main injection timing is advanced nearer to the top dead center (TDC). Further efficiency and emissions benefits may be realized if vortex formation can be strengthened for near-TDC injections. This work presents a simulation-based analysis of turbulent flow evolution within a stepped-lip combustion chamber.
Journal Article

Numerical Investigation on Mixture Formation and Combustion Process of Innovative Piston Bowl Geometries in a Swirl-Supported Light-Duty Diesel Engine

2020-12-28
Abstract In recent years, several innovative diesel combustion systems were developed and optimized in order to enhance the air and injected fuel mixing for engine efficiency improvements and to mitigate the formation of fuel-rich regions for soot emissions reduction. With these aims, a three-dimensional computational fluid dynamics (3D-CFD) numerical study was carried out in order to evaluate the impact of three different piston bowl geometries on a passenger car four-cylinder diesel engine, 1.6 liters. Once the numerical model was validated considering the baseline re-entrant bowl, two innovative bowl geometries were defined: one based on the stepped-lip bowl; the other including a number of radial bumps equal to the nozzle holes number. Firstly, the rated power engine operating condition was investigated under nonreacting conditions to evaluate the piston bowl effects on the in-cylinder mixing.
Journal Article

Numerical and Experimental Investigation of the Optimization of Vehicle Speed and Inter-Vehicle Distance in an Automated Highway Car Platoon to Minimize Fuel Consumption

2018-06-22
Abstract The development of the technology of automated highways promises the opportunity for the vehicles to travel safely at a closer distance concerning each other. As such, vehicles moving in the wake of others experience a reduction in fuel consumption. This article investigates the effect of longitudinal distance between two passenger cars on drag coefficients numerically and experimentally. For the numerical analysis, the fluid flow at car speeds of 70, 90 and 110 km/h were examined. The Artificial Intelligence coding was applied to train an Artificial Neural Network to extend the calculated data. The optimum values for the inter-vehicle distance and the vehicle speed to assure the least drag coefficient are obtained. To support the numerical results an instrument designed and built particularly to accurately measure the fuel consumption was installed on a midsize sedan car and some field tests were carried out.
Journal Article

Numerical Study to Achieve Low Fuel Consumption and Nitrogen Oxides Emissions in a Split-Cycle Engine Adapted from the Conventional Architecture

2021-02-12
Abstract This work presents a numerical study of the performance and nitrogen oxides (NOx) emissions of a conventional ethanol engine converted to work as a flex-fuel nonconventional architecture: the Split-Cycle Engine (SCE). For this study, the conventional engine fueled with hydrous ethanol was modeled and validated with data from experimental tests. Then the model was converted to operate as an SCE with two compressors and two expanders and simulated with a progressive downsizing of the compressors of the SCE. When the swept volume of the compressors was reduced to 87% of that of the expanders, the thermal conversion efficiency increased by 3.3%. Because of this, the downsized SCE was submitted to simulation runs using two different fuels: hydrous ethanol (H100) and an indolene-ethanol blend (H85). The results of the simulations were compared to the experimental results of the conventional engine.
X