Refine Your Search

Topic

Search Results

Journal Article

Tire Side Force Characteristics with the Coupling Effect of Vertical Load and Inflation Pressure

2018-11-09
Abstract The tire vertical load and inflation pressure have great influence on tire steady- and non-steady-state characteristics and, consequently, on the vehicle handling and stability. The objective of this article is to reveal the coupling effect of tire vertical load and inflation pressure on tire characteristics and then introduce an improved UniTire side force model including such coupling effect through experimental and theoretical analysis. First, the influence of the tire vertical load and inflation pressure on the tire characteristics is presented through experimental analysis. Second, the theoretical tire cornering stiffness and lateral relaxation length model are introduced to study the underlying mechanism of the coupling effect. Then, an improved UniTire side force model including the coupling effect of tire vertical load and inflation pressure is derived. Finally, the proposed improved UniTire side force model is validated through tire steady-state and transient data.
Journal Article

Study of the Sliding Door Shaking Problem and Optimization Based on the Application of Euler’s Spiral

2018-10-03
Abstract This study focuses on the sudden shaking phenomenon of a sliding door passing through a corner. This phenomenon requires attention because shaking during movement can lead to a harsh operation feeling and a short service life. An experiment based on a test setup was conducted, and the sudden change in the acceleration of a sliding door panel was measured. Based on multi-body dynamics (MBD) analysis and a rigid-flexible coupled model of the sliding door system, the cause of the sudden shaking was determined to be the discontinuous curvature of the middle rail trajectory. A transition curve was proposed as the solution for the discontinuous curvature, and Euler’s spiral was applied in the redesign of the middle rail trajectory. Verified by simulations, the results exhibit considerable improvement in sliding door movement stability, with large reductions in the maximum center of mass (CM) acceleration and guide roller impact force.
Journal Article

Feature-Based Response Classification in Nonlinear Structural Design Simulations

2018-07-24
Abstract An applied system design analysis approach for automated processing and classification of simulated structural responses is presented. Deterministic and nonlinear dynamics are studied under ideal loading and low noise conditions to determine fundamental system properties, how they vary and possibly interact. Using powerful computer resources, large amounts of simulated raw data can be produced in a short period of time. Efficient tools for data processing and interpretation are then needed, but existing ones often require much manual preparation and direct human judgement. Thus, there is a need to develop techniques that help to treat more virtual prototype variants and efficiently extract useful information from them. For this, time signals are evaluated by methods commonly used within structural dynamics and statistical learning. A multi-level multi-frequency stimulus function is constructed and simulated response signals are combined into frequency domain functions.
Journal Article

Detection Method for Cavity Defects in Ballastless Track Structures of High-Speed Railways Based on Air-Coupled Ultrasonic Lamb Waves

2019-07-02
Abstract This study proposes a method for the rapid detection and location of cavity defects in ballastless track structures of high-speed railways in service. First, the propagation law of air-coupled ultrasonic Lamb waves in the ballastless track structure is studied. Theoretical calculation results show that the ultrasonic Lamb wave group velocity of the A2 mode in the track plate is 4000 m/s. Then, the excitation and reception methods of the air-coupled ultrasound are studied. Theoretical and experimental results show that the A2 mode Lamb wave can be generated by the 3.8° oblique incidence of the ballastless track structure. Finally, an experimental system for air-coupled ultrasonic testing is constructed. A pair of air-coupled ultrasonic probes is used to provide excitation and reception Lamb wave signals at an inclined angle of 3.8°, 20 mm away from the surface of the track plate, and 40 mm/step along the scanning direction.
Journal Article

Development of a New Neutral Coasting Control Utilizing ADAS and GPS

2019-01-23
Abstract It has been discussed in numerous prior studies that in-neutral coasting, or sailing, can accomplish considerable amount of fuel saving when properly used. The driving maneuver basically makes the vehicle sail in neutral gear when propulsion is unnecessary. By disengaging a clutch or shifting the gear to neutral, the vehicle may better utilize its kinetic energy by avoiding dragging from the engine side. This strategy has been carried over to series production recently in some of the vehicles on the market and has become one of the eco-mode features available in current vehicles. However, the duration of coasting must be long enough to attain more fuel economy benefit than deceleration fuel cutoff (DFCO)-which exists in all current vehicle powertrain controllers-can bring. Also, the transients during shifting back to drive gear can result in a drivability concern.
Journal Article

Enhancement of Automotive Penetration Testing with Threat Analyses Results

2018-11-02
Abstract In this work, we present an approach to support penetration tests by combining safety and security analyses to enhance automotive security testing. Our approach includes a new way to combine safety and threat analyses to derive possible test cases. We reuse outcomes of a performed safety analysis as the input for a threat analysis. We show systematically how to derive test cases, and we present the applicability of our approach by deriving and performing test cases for a penetration test of an automotive electronic control unit (ECU). Therefore, we selected an airbag control unit due to its safety-critical functionality. During the penetration test, the selected control unit was installed on a test bench, and we were able to successfully exploit a discovered vulnerability, causing the detonation of airbags.
Journal Article

Experimental Investigation of Electric Vehicle Performance and Energy Consumption on Chassis Dynamometer Using Drive Cycle Analysis

2019-12-02
Abstract This article reports an experimental study carried out to investigate the vehicle performance and energy consumption (EC) of an electric vehicle (EV) on three different driving cycles using drive cycle analysis. The driving cycles are the Indian Driving Cycle (IDC), Modified Indian Driving Cycle (MIDC) and Worldwide harmonized Light vehicles Test Cycle (WLTC). A new prototype electric powertrain was developed using an indigenous three-phase induction motor (3PIM), Li-ion battery (LiB) pack, vector motor controller, and newly developed mechanical parts. In this research work, a pollution-causing gasoline car (Maruti Zen) was converted into an EV by using the new powertrain. The EV conversion vehicle was used as the test vehicle. After the removal of the Internal Combustion Engine (ICE) the new powertrain was integrated with the vehicle’s gearbox (GB) system which was configured on a single motor, fixed gear configuration having a gear ratio of 1.28:1.
Journal Article

Power Quality Test Data Analysis for Aircraft Subsystem

2018-12-21
Abstract Aircraft subsystem development involves various combinations of testing and qualification activities to realize a flight-worthy system. The subsystem needs to be verified for a massive number of customer requirements. Power quality (PQ) testing is also an important testing activity carried out as part of the environmental qualification test. It is intended to verify the functionality of subsystems with various kinds of power disturbances and to determine the ability of a subsystem to withstand PQ disturbances. The subsystem being designed should be reliable enough to handle PQ anomalies. A PQ test results in an enormous amount of data for analysis with millions of data samples depending on the test and can be identified as big data. The engineer needs to analyze each set of test data as part of post-processing to ensure the power disturbances during testing are as per the standard requirements and that the functional performance of the subsystem is met.
Journal Article

Stall Mitigation and Lift Enhancement of NACA 0012 with Triangle-Shaped Surface Protrusion at a Reynolds Number of 105

2019-11-21
Abstract Transient numerical simulations are conducted over a NACA 0012 airfoil with triangular protrusions at a Reynolds number (Re) of 100000 using the γ-Reθ transition Shear Stress Transport (SST) turbulence model. Protrusions of heights 0.5%c, 1%c, and 2%c are placed at one of the three locations, viz, the leading edge (LE), 5%c on the suction surface, and 5%c on the pressure surface, while the angle of attack (AOA) is varied between 0° and 20°. Results obtained from the time-averaged solution of the unsteady Navier-Stokes equation indicate that the smaller protrusion placed at 5%c on the suction surface improves the post-stall lift coefficient by up to 59%, without altering the pre-stall characteristics. The improvement in time-averaged lift coefficients comes with enhanced flow unsteadiness due to vigorous vortex shedding.
Journal Article

Mathematical Model of Heat-Controlled Accumulator (HCA) for Microgravity Conditions

2020-01-20
Abstract It is reasonable to use a two-phase heat transfer loop (TPL) in a thermal control system (TCS) of spacecraft with large heat dissipation. One of the key elements of TPL is a heat-controlled accumulator (HCA). The HCA represents a volume which is filled with vapor and liquid of a single working fluid without bellows. The pressure in a HCA is controlled by the heater. The heat and mass transfer processes in the HCA can proceed with a significant nonequilibrium. This has implications on the regulation of TPL. This article presents a mathematical model of nonequilibrium heat and mass transfer processes in an HCA for microgravity conditions. The model uses the equations of mass and energy conservation separately for the vapor and liquid phases. Interfacial heat and mass transfer is also taken into account. It proposes to use the convective component k for the level of nonequilibrium evaluation.
Journal Article

Parametric Studies on Airfoil-Boundary Layer Ingestion Propulsion System

2020-03-11
Abstract From the fact that a propulsor consumes less power for a given thrust if the inlet air is slower, simulations are conducted for a propulsor imposed behind an airfoil as ideal boundary layer ingestion (BLI) propulsor to stand on the benefits of this configuration from the point of view of power and efficiency and to get a closer look on the mutual interaction between them. This interaction is quantified by the impact on three main sets of parameters, namely, power consumption, boundary layer properties, and airfoil performance. The position and size of the propulsor have great influence on the flow around the airfoil. Parametric studies are carried out to understand their influence. BLI propulsor directly affects the power saving and all of the pressure-dependent parameters, including lift and drag. For the present case, power saving reached 14.4% compared to the propeller working in freestream.
Journal Article

Understanding the Impact of Standardized SAE Waveform Parameter Variation on Artificial Lightning Plasma, Specimen Loading, and Composite Material Damage

2020-02-18
Abstract Previous works have established strategies to model artificial test lightning plasma with specific waveform parameters and use the predicted plasma behavior to estimate test specimen damage. To date no computational works have quantified the influence of varying the waveform parameters on the predicted plasma behavior and resulting specimen damage. Herein test standard Waveform B has been modelled and the waveform parameters of “waveform peak,” “rise time,” and “time to reach the post-peak value” have been varied. The plasma and specimen behaviors have been modelled using the Finite Element (FE) method (a Magnetohydrodynamic FE multiphysics model for the plasma, a FE thermal-electric model for the specimen). For the test arrangements modelled herein, it has been found that “peak current” is the key parameter influencing plasma properties and specimen damage.
Journal Article

Technological Stability of the Liner in a Separable Metal Composite Pressure Vessel

2020-04-21
Abstract The article considers one of the possible mechanisms of loading the solidity of a cylindrical metal composite high-pressure vessel (MC HPV). This mechanism manifests itself as delamination of a thin-walled metal shell (liner) from a more rigid composite shell causing local buckling. A similar effect can be detected in the manufacturing process of MC HPV, when the composite shell is formed by winding with tension a carbon fiber-reinforced plastic tape on the liner. Pressure transfer from the composite shell to the liner is carried out by the method of temperature analogy, that is, by cooling the composite shell, thermally insulated from the liner. To solve the problem of externally confined liner local buckling an approach is proposed, which is based on three points: the introduction of local technological deviations inherent in actual structures, the determination of the general stress-strain state, and a real-time deforming.
Journal Article

Investigation on Underhood Thermal Analysis of Truck Platooning

2018-03-22
Abstract This paper presents a combined aero-thermal computational fluid dynamic (CFD) evaluation of platooning medium duty commercial vehicles in two highway configurations. Thermal analysis comparison is made between an approach that includes vehicle drag reduction on engine heat rejection and one that does not by assuming a constant heat rejection based on open road conditions. The paper concludes that accounting for aerodynamic drag reduction on engine heat load provides a more real world evaluation than assuming a constant heat load based on open road conditions. A 3D CFD underhood thermal simulations are performed in two different vehicle platooning configurations; (i) single-lane and (ii) two-lane traffic conditions. The vehicle platooning consists of two identical vehicles, i.e. leading and trailing vehicle. In this work, heat exchangers are modeled by two different heat rejection rate models.
Journal Article

A Wind-Tunnel Investigation of the Influence of Separation Distance, Lateral Stagger, and Trailer Configuration on the Drag-Reduction Potential of a Two-Truck Platoon

2018-06-13
Abstract A wind-tunnel study was undertaken to investigate the drag reduction potential of two-truck platooning, in the context of understanding some of the factors that may influence the potential fuel savings and greenhouse-gas reductions. Testing was undertaken in the National Research Council Canada 2 m × 3 m Wind Tunnel with two 1/15-scale models of modern aerodynamic tractors paired with dry-van trailers configured with and without combinations of side-skirts and boat-tails. Separation distances of 0.14, 0.28, 0.49, 0.70 and 1.04 vehicle lengths were tested (3 m, 6 m, 10.5 m, 15 m, and 22.5 m full scale). Additionally, within-lane lateral offsets up to 0.31 vehicle widths (0.8 m full scale) were evaluated, along with a full-lane offset of 1.42 vehicle widths (3.7 m full scale). This study has made use of a wind-averaged-drag coefficient as the primary metric for evaluating the effect of vehicle platooning.
Journal Article

Vibration Response Properties in Frame Hanging Catalyst Muffler

2018-07-24
Abstract Dynamic stresses exist in parts of a catalyst muffler caused by the vibration of a moving vehicle, and it is important to clarify and predict the vibration response properties for preventing fatigue failures. Assuming a vibration isolating installation in the vehicle frame, the vibration transmissibility and local dynamic stress of the catalyst muffler were examined through a vibration machine. Based on the measured data and by systematically taking vibration theories into consideration, a new prediction method of the vibration modes and parameters was proposed that takes account of vibration isolating and damping. A lumped vibration model with the six-element and one mass point was set up, and the vibration response parameters were analyzed accurately from equations of motion. In the vibration test, resonance peaks from the hanging bracket, rubber bush, and muffler parts were confirmed in three excitation drives, and local stress peaks were coordinate with them as well.
Journal Article

An Approach for Heavy-Duty Vehicle-Level Engine Brake Performance Evaluation

2019-01-08
Abstract An innovative analysis approach to evaluate heavy-duty vehicle downhill engine brake performance was developed. The vehicle model developed with GT-Drive simulates vehicle downhill control speeds with different engine brake retarding powers, transmission gears, and vehicle weights at sea level or high altitude. The outputs are then used to construct multi-factor parametric design charts. The charts can be used to analyze the vehicle-level engine brake capabilities or compare braking performance difference between different engine brake configurations to quantify the risk of engine retarding power deficiency at both sea level and high altitude downhill driving conditions.
Journal Article

Assessing Road Load Coefficients of a Semi-Trailer Combination Using a Mechanical Simulation Software with Calibration Corrections

2019-01-07
Abstract The study of road loads on trucks plays a major role in assessing the effect of heavy-vehicle design on fuel conservation measures. Coastdown testing with full-scale vehicles in the field offers a good avenue to extract drag components, provided that random instrumentation faults and biased environmental conditions do not introduce errors into the results. However, full-scale coastdown testing is expensive, and environmental biases which are ever-present are difficult to control in the results reduction. Procedures introduced to overcome the shortcomings of full-scale field testing, such as wind tunnels and computational fluid dynamics (CFD), though very reliable, mainly focus on estimating the effects of aerodynamic drag forces to the neglect of other road loads which should be considered.
Journal Article

Development of a Standard Testing Method for Vehicle Cabin Air Quality Index

2019-05-20
Abstract Vehicle cabin air quality depends on various parameters such as number of passengers, fan speed, and vehicle speed. In addition to controlling the temperature inside the vehicle, HVAC control system has evolved to improve cabin air quality as well. However, there is no standard test method to ensure reliable and repeatable comparison among different cars. The current study defined Cabin Air Quality Index (CAQI) and proposed a test method to determine CAQI. CAQIparticles showed dependence on the choice of metrics among particle number (PN), particle surface area (PS), and particle mass (PM). CAQIparticles is less than 1 while CAQICO2 is larger than 1. The proposed test method is promising but needs further improvement for smaller coefficient of variations (COVs).
Journal Article

Prediction and Control of Response Time of the Semitrailer Air Braking System

2019-05-09
Abstract The response time of the air braking system is the main parameter affecting the longitudinal braking distance of vehicles. In this article, in order to predict and control the response time of the braking system of semitrailers, an AMESim model of the semitrailer braking system involving the relay emergency valve (REV) and chambers was established on the basis of analyzing systematically the working characteristics of the braking system in different braking stages: feedback braking, relay braking, and emergency braking. A semitrailer braking test bench including the brake test circuit and data acquisition system was built to verify the model with typical maneuver. For further evaluating the semitrailer braking response time, an experiment under different control pressures was carried out. Experimental results revealed the necessity of controlling the response time.
X