Refine Your Search

Topic

Search Results

Journal Article

A Review on Physical Mechanisms of Tire-Pavement Interaction Noise

2019-05-16
Abstract Tire-pavement interaction noise (TPIN) dominates for passenger cars above 40 km/h and trucks above 70 km/h. Numerous studies have attempted to uncover and distinguish the basic mechanisms of TPIN. However, intense debate is still ongoing about the validity of these mechanisms. In this work, the physical mechanisms proposed in the literature were reviewed and divided into three categories: generation mechanisms, amplification mechanisms, and attenuation mechanisms. The purpose of this article is to gather the published general opinions for further open discussions.
Journal Article

Application Study of Blind Spot Monitoring System Realized by Monocular Camera with CNN Depth Cues Extraction Approach

2019-12-17
Abstract The image from monocular camera is processed to detect depth information of the obstacles viewed by the rearview cameras of vehicle door side. The depth information recognized from a single, two-dimensional image data can be used for the purpose of blind spot area detection. Blind spot detection function is contributing to enhance the vehicle safety in scenarios such as lane-change and overtaking driving. In this article the depth cue information is inferred from the feature comparison between two image blocks selected within a single image. Convolutional neural network model trained by deep learning process with good enough accuracy is applied to distinguish if an obstacle is far or near for a specified threshold in the vehicle blind spot area. The application study results are demonstrated by the offline calculations with real traffic image data.
Journal Article

A Review of Sensor Technologies for Automotive Fuel Economy Benefits

2018-12-11
Abstract This article is a review of automobile sensor technologies that have the potential to enhance fuel economy. Based on an in-depth review of the literature and demonstration projects, the following sensor technologies were selected for evaluation: vehicular radar systems (VRS), camera systems (CS), and vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) systems. V2V and V2I systems were found to have the highest merit in improving fuel economy over a wide range of integration strategies, with fuel economy improvements ranging from 5 to 20% with V2V and 10 to 25% for V2I. However, V2V and V2I systems require significant adoption for practical application which is not expected in this decade. Numerous academic studies and contemporary vehicular safety systems attest VRS as more technologically mature and robust relative to other sensors. However, VRS offers less fuel economy enhancement (~14%).
Journal Article

Aerodynamic Analysis of Cooling Airflow for Different Front-End Designs of a Heavy-Duty Cab-Over-Engine Truck

2018-04-07
Abstract Improving the aerodynamics of heavy trucks is an important consideration in the strive for more energy-efficient vehicles. Cooling drag is one part of the total aerodynamic resistance acting on a vehicle, which arises as a consequence of air flowing through the grille area, the heat exchangers, and the irregular under-hood area. Today cooling packages of heavy trucks are dimensioned for a critical cooling case, typically when the vehicle is driving fully laden, at low speed up a steep hill. However, for long-haul trucks, mostly operating at highway speeds on mostly level roads, it may not be necessary to have all the cooling airflow from an open-grille configuration. It can therefore be desirable for fuel consumption purposes, to shut off the entire cooling airflow, or a portion of it, under certain driving conditions dictated by the cooling demands. In Europe, most trucks operating on the roads are of cab-over-engine type, as a consequence of the length legislations present.
Journal Article

Investigation of Passive Porosity as a Means for Bluff-Body Drag Reduction

2018-03-16
Abstract An investigation into the capability of passive porosity to reduce the drag of a bluff-body is presented. This initial work involves integrating varying degrees of porosity into the side and back faces of a small-scale model to determine optimum conditions for maximum drag reduction. Both force and pressure measurements at differing degrees of model yaw are presented, with the conditions for optimum performance, identified. At a length-based Reynolds number of 2.3 × 106, results showed a maximum drag reduction of 12% at zero yaw when the ratio of the open area on the back face relative to the side faces was between two and four. For all non-zero yaw angles tested, this ratio reduced to approximately two, with the drag benefit reducing to 6% at 10.5 degrees. From a supplementary theoretical analysis, calculated optimum bleed rate into the base for maximum drag reduction, also showed reasonable agreement to other results reported previously.
Journal Article

Numerical Analysis of Blast Protection Improvement of an Armored Vehicle Cab by Composite Armors and Anti-Shock Seats

2018-12-05
Abstract The objective of this article is to evaluate the effects of different blast protective modules to military vehicle structures and occupants. The dynamic responses of the V-shape integral basic armor, the add-on honeycomb sandwich structure module, and the anti-shock seat-dummy system were simulated and analyzed. The improvements of occupant survivability by different protective modules were compared using occupant injury criteria. The integral armored cab can maintain the integrity of the cab body structure. The add-on honeycomb sandwich armor reduces the peak structural deformation and velocity of the cab floor by 34.9% and 47.4%, respectively, compared with the cab with integral armors only. The integral armored cab with the anti-shock seat or the honeycomb sandwich structures reduces the occupant shock responses below the injury criteria. For different blast threat intensities, the selection of appropriate protective modules can meet protection requirements.
Journal Article

Mixture Distributions in Autonomous Decision-Making for Industry 4.0

2019-05-29
Abstract Industry 4.0 is expected to revolutionize product development and, in particular, manufacturing systems. Cyber-physical production systems and digital twins of the product and process already provide the means to predict possible future states of the final product given the current production parameters. With the advent of further data integration coupled with the need for autonomous decision-making, methods are needed to make decisions in real time and in an environment of uncertainty in both the possible outcomes and in the stakeholders’ preferences over them. This article proposes a method of autonomous decision-making in data-intensive environments, such as a cyber-physical assembly system. Theoretical results in group decision-making and utility maximization using mixture distributions are presented. This allows us to perform calculations on expected utility accurately and efficiently through closed-form expressions, which are also provided.
Journal Article

Comparison of Various Drag Reduction Devices and Their Aerodynamic Effects on the DrivAer Model

2018-07-05
Abstract In this study, two types of drag reduction devices (a horizontal plate, and a vertical plate) are used to weaken the downwash of the upper flow and c-pillar vortex of the DrivAer notchback model driving at high speed (140 km/h). By analyzing and comparing 15 cases in total, the aerodynamic drag reduction mechanism can be used in the development of vehicles. First, various CFD simulation conditions of a baseline model were compared to determine the analysis condition that efficiently calculates the correct aerodynamic drag. The vertical plate and horizontal plate applied in the path of the c-pillar vortex and downwash suppressed vortex development and induced rapid dissipation. As a result, the application of a 50-mm wedge-shaped vertical plate to the trunk weakened the vortex and reduced the drag by 3.3% by preventing the side flow from entering the trunk top.
Journal Article

Steady Aeroelastic Response Prediction and Validation for Automobile Hoods

2018-07-10
Abstract The pursuit of improved fuel economy through weight reduction, reduced manufacturing costs, and improved crash safety can result in increased compliance in automobile structures. However, with compliance comes an increased susceptibility to aerodynamic and vibratory loads. The hood in particular withstands considerable aerodynamic force at highway speeds, creating the potential for significant aeroelastic response that may adversely impact customer satisfaction and perception of vehicle quality. This work seeks an improved understanding in computational and experimental study of fluid-structure interactions between automobile hoods and the surrounding internal and external flow. Computational analysis was carried out using coupled CFD-FEM solvers with detailed models of the automobile topology and structural components. The experimental work consisted of wind tunnel tests using a full-scale production vehicle.
Journal Article

Artificial Lightning Tests on Metal and CFRP Automotive Bodies: A Comparative Study

2019-01-07
Abstract Carbon fiber reinforced plastic (CFRP) has been used in automobiles as well as airplanes. Because of its light weight and high strength, CFRP is a good choice for making vehicle bodies lighter, which would improve fuel economy. Conventional metal bodies provide a convenient body return for electric wiring and offer good shielding against electromagnetic fields. Although CFRP is a conductor, its conductivity is much lower than that of metals. Therefore, CFRP bodies are usually not useful for electric wiring. In thunderstorms, an automotive body is considered to be a Faraday cage that protects the vehicle’s occupants from the potential harms of lightning. Before CFRP becomes widely applied to automotive bodies, its electric and electromagnetic properties need to be investigated in order to determine whether it also works as a Faraday cage against lightning. In this article, CFRP and metal body vehicles were tested under artificial lightning.
Journal Article

Structural Optimization of a Pickup Frame Combining Thickness, Shape and Feature Parameters for Lightweighting

2018-08-08
Abstract The methods for improving the torsion stiffness of a pickup chassis frame were discussed, including increasing the part thickness on frame, enlarging the cross section of rails, and adding bulkhead feature inside the rails. Sizing optimization was conducted to get the optimal thickness configuration for frame parts and meet the siffness requirement. The cross section of frame rails were parameterized and shape optimization was conduted to get the optimal rail cross sections for stiffness improvement. Additional bulkheads were added to the frame rails, and sizing optimization conducted to find the most effective bulkheads to add and their optimal gauge. A material efficiency ratio μ is used to evaluate the efficiency of a design change with respect to torsion stiffness. Among those torsion improvement methods, adding bulkhead feature gives the highest material efficiency ratio, but the stiffness improvement range is very limited.
Journal Article

Industrial Framework for Identification and Verification of Hot Spots in Automotive Composite Structures

2019-05-16
Abstract In this article, a framework for efficient strength analysis of large and complex automotive composite structures is presented. This article focuses on processes and methods that are compliant with common practice in the automotive industry. The proposed framework uses efficient shell models for identification of hot spots, automated remodelling and analysis of found hot spots with high-fidelity models and finally an automated way of post-processing the detailed models. The process is developed to allow verification of a large number of load cases in large models and still consider all potential failure modes. The process is focused on laminated composite primary structures. This article highlights the challenges and tools for setting up this framework.
Journal Article

A Review on Electromagnetic Sheet Metal Forming of Continuum Sheet Metals

2019-05-29
Abstract Electromagnetic forming (EMF) is a high-speed impulse forming process developed during the 1950s and 1960s to acquire shapes from sheet metal that could not be obtained using conventional forming techniques. In order to attain required deformation, EMF process applies high Lorentz force for a very short duration of time. Due to the ability to form aluminum and other low-formability materials, the use of EMF of sheet metal for automobile parts has been rising in recent years. This review gives an inclusive survey of historical progress in EMF of continuum sheet metals. Also, the EMF is reviewed based on analytical approach, finite element method (FEM) simulation-based approach and experimental approach, on formability of the metals.
Journal Article

A Study on Lightweight Design of Automotive Front Rails Using Tailored Blanks by Nonlinear Structural Optimization

2018-11-07
Abstract Tailored blanks offer great lightweighting opportunities for automotive industry and were applied on the front rails of a sedan in this research. To achieve the most efficient material usage, all the front rail parts were tailored into multiple sheets with the gauge of each sheet defined as a design variable for optimization. The equivalent static loads (ESL) method was adopted for linear optimization and the Insurance Institute for Highway Safety (IIHS) moderate overlap frontal crash as the nonlinear analysis load case. The torsion and bending stiffness of the sedan body in white (BIW) were set as design constraints. The occupant compartment intrusion in IIHS moderate overlap front crash was set as design objective to be minimized. The optimal thickness configuration for the tailored front rail designs was obtained through ESL optimization for multiple mass saving targets.
Journal Article

Automated Guided Vehicles for Small Manufacturing Enterprises: A Review

2018-09-17
Abstract Automated guided vehicle systems (AGVS) are the prominent one in modern material handling systems used in small manufacturing enterprises (SMEs) due to their exciting features and benefits. This article pinpoints the need of AGVS in SMEs by describing the material handling selection in SMEs and enlightening recent technological developments and approaches of the AGVS. Additionally, it summarizes the analytical and simulation-based tools utilized in design problems of AGVS along with the influence of material handling management and key hurdles of AGVS. The current study provides a limelight towards making smart automated guided vehicles (AGVs) with the simplified and proper routing system and favorable materials and more importantly reducing the cost and increasing the flexibility.
Journal Article

Cyberattacks and Countermeasures for Intelligent and Connected Vehicles

2019-10-14
Abstract ICVs are expected to make the transportation safer, cleaner, and more comfortable in the near future. However, the trend of connectivity has greatly increased the attack surfaces of vehicles, which makes in-vehicle networks more vulnerable to cyberattacks which then causes serious security and safety issues. In this article, we therefore systematically analyzed cyberattacks and corresponding countermeasures for in-vehicle networks of intelligent and connected vehicles (ICVs). Firstly, we analyzed the security risk of ICVs and proposed an in-vehicle network model from a hierarchical point of view. Then, we discussed possible cyberattacks at each layer of proposed network model.
Journal Article

Recent Development in Friction Stir Welding Process: A Review

2020-09-09
Abstract The Friction stir welding (FSW) is recently presented so to join different materials without the melting process as a solid-state joining technique. A widely application for the FSW process is recently developed in automotive industries. To create the welded components by using the FSW, the plunged probe and shoulder as welding tools are used. The Finite Element Method (FEM) can be used so to simulate and analyze material flow during the FSW process. As a result, thermal and mechanical stresses on the workpiece and welding tool can be analyzed and decreased. Effects of the welding process parameters such as tool rotational speed, welding speed, tool tilt angle, depth of the welding tool, and tool shoulder diameter can be analyzed and optimized so to increase the efficiency of the production process. Material characteristics of welded parts such as hardness or grain size can be analyzed so to increase the quality of part production.
Journal Article

Optimal Design of Carbon Fiber B-Pillar Structure Based on Equal Stiffness Replacement

2020-03-23
Abstract Based on the characteristics of high strength and modulus of carbon fiber-reinforced composite (CFRP), in this article, the CFRP material was used to replace the steel material of the automobile’s B-pillar inner and outer plates, and the three-stage optimization design of the lamination structure was carried out. Firstly, this article used the principle of equal stiffness replacement to determine the thickness of the carbon fiber B-pillar inner and outer plates, and the structural design of the replaced B-pillar was also carried out. Secondly, on the basis of the vehicle collision model, the B-pillar subsystem model was extracted, and the material replacement and collision simulation were carried out.
Journal Article

Modeling and Experiment of a Heavy-Duty Truck with an Improved Maxwell-Slip Model and Iterated Improved Reduction System Method

2020-01-27
Abstract Since vehicle structural flexibility and suspension nonlinearity are usually not considered, many existing vehicle models have difficulty in accurately describing the dynamic characteristics of the actual vehicle, which limits their practical applications. This article presents a rigid-flexible coupled system to investigate the dynamic behavior of a heavy-duty truck. An improved Maxwell-slip (IMS) model is proposed to describe the hysteresis nonlinearity of a leaf spring. In the coupled system, the axles and powertrain are simplified to be rigid, and the cab and frame are modeled using finite element method (FEM) considering their flexibility. During the solution process, the application of the FEM leads to a significant increase in the computer burden. Therefore, the iterated improved reduction system (IIRS) method is adopted to reduce the size of the large-size finite-element (FE) models to achieve the purpose of improving the calculation efficiency.
Journal Article

Study on the Quantitative Relationship between Static Stiffness and Modal Parameters of an Aluminum Space Frame

2020-01-27
Abstract In this article, the quantitative relationship between the static stiffness, lightweight factor, and modal parameters of an aluminum space frame was investigated. Modal theory calculation and finite element method were employed in the analysis. Fifty modal parameters were extracted from the finite element model of the frame to calculate the bending stiffness, torsional stiffness, and lightweight factor of the frame. The deviations of the bending stiffness, torsional stiffness, and lightweight factor obtained from the modal theory and the finite element theory were found to be 0.91%, 1.72%, and 1.71%, respectively. It indicates that these two methods have similar accuracy. It was confirmed that the sum of each order modal compliance could be used to calculate the static compliance of the aluminum space frame. The first-order bending mode was found to be the corresponding mode order, which made the largest contribution to the bending stiffness.
X