Refine Your Search


Search Results

Journal Article

A Review on Physical Mechanisms of Tire-Pavement Interaction Noise

Abstract Tire-pavement interaction noise (TPIN) dominates for passenger cars above 40 km/h and trucks above 70 km/h. Numerous studies have attempted to uncover and distinguish the basic mechanisms of TPIN. However, intense debate is still ongoing about the validity of these mechanisms. In this work, the physical mechanisms proposed in the literature were reviewed and divided into three categories: generation mechanisms, amplification mechanisms, and attenuation mechanisms. The purpose of this article is to gather the published general opinions for further open discussions.
Journal Article

A Review of Sensor Technologies for Automotive Fuel Economy Benefits

Abstract This article is a review of automobile sensor technologies that have the potential to enhance fuel economy. Based on an in-depth review of the literature and demonstration projects, the following sensor technologies were selected for evaluation: vehicular radar systems (VRS), camera systems (CS), and vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) systems. V2V and V2I systems were found to have the highest merit in improving fuel economy over a wide range of integration strategies, with fuel economy improvements ranging from 5 to 20% with V2V and 10 to 25% for V2I. However, V2V and V2I systems require significant adoption for practical application which is not expected in this decade. Numerous academic studies and contemporary vehicular safety systems attest VRS as more technologically mature and robust relative to other sensors. However, VRS offers less fuel economy enhancement (~14%).
Journal Article

Determination of Influence of Parameters on Undercarriage Shock Absorber

Abstract The simple oleo pneumatic (shock absorber) model was developed using the available computational fluid dynamics (CFD) program to understand how various parameters influence the performance of the undercarriage shock absorber. The study is divided into two parts: first part is focused on the influence of orifice geometry and the second part of the study is focused on the other parameters including chamber geometry. Both the studies are carried out using design of experiments (DOE) for the same output characteristics (response). In this study, the impacts on the flow behavior due to the orifice shapes are also studied. The results and the other outcomes are shown in the form of DOE parameters such as main effect plots and interaction plots.
Journal Article

Improving the Modelling of Dissociating Hydrogen Nozzles

Abstract While the design of nozzles for diatomic gases is very well established and covered by published works, the case of a diatomic gas dissociating to monatomic along a nozzle is a novel subject that needs a proper mathematical description. These novel studies are relevant to the definition of nozzles for gas-core Nuclear Thermal Rockets (NTR) that are receiving increased attention for the potential advantages they may deliver versus current generation rockets. The article thus reviews the design of the nozzles of gas-core NTR that use hydrogen as the propellant. Propellant temperatures are expected to reach 9,000-15,000 K. Above 1500 K, hydrogen begins to dissociate at low pressures, and around 3000 K dissociation also occurs at high pressures. At a given temperature, the lower the gas pressure the more molecules dissociate, and H2 → H + H. The properties of the gas are a function of the mass fractions of diatomic and monatomic hydrogen x H2 and x H = 1 − x H2.
Journal Article

Stability Analysis of Combined Braking System of Tractor-Semitrailer Based on Phase-Plane Method

Abstract An analysis method for the stability of combined braking system of tractor-semitrailer based on phase-plane is investigated. Based on a 9 degree of freedom model, considering longitudinal load transfer, nonlinear model of tire and other factors, the braking stability of tractor-semitrailer is analyzed graphically on the phase plane. The stability of both tractor and semitrailer with different retarder gear is validated with the energy plane, β plane, yaw angle plane and hinged angle plane. The result indicates that in the long downhill with curve condition, both tractor and semitrailer show good stability when retarder is working at 1st and 2nd gear, and when it is at 3rd gear, the tractor is close to be unstable while semitrailer is unstable already. Besides, tractor and semitrailer both lose stability when retarder is working at the 4th gear.
Journal Article

Investigation of Fatigue Life of Wheels in Commercial Vehicles

Abstract In India, vehicle population increases every day along with road accidents by 2.5% every year. About 7.7% of accidents are caused by wheel separation, 60% of which are due to nut-related problems. Wheel separations in vehicles occur due to fastener issues and fatigue failures in bolts. A study of the reasons for and mechanisms of nut loosening showed that left-hand side wheels detached and fracture failure occurred in right-hand side studs. Fatigue life of wheels with Nord-Lock washer and without washer is determined by using numerical analysis as per the IS 9438 cornering fatigue test. These numerical results are compared with experimental results.
Journal Article

3D-CFD-Study of Aerodynamic Losses in Compressor Impellers

Abstract Due to the increasing requirements for efficiency, the wide range of characteristics and the improved possibilities of modern development and production processes, compressors in turbochargers have become more individualized in order to adapt to the requirements of internal combustion engines. An understanding of the working mechanisms as well as an understanding of the way that losses occur in the flow allows a reduced development effort during the optimization process. This article presents three-dimensional (3D) Computational Fluid Dynamics (CFD) investigations of the loss mechanisms and quantitative calculations of individual losses. The 3D-CFD method used in this article will reduce the drawbacks of one-dimensional calculation as far as possible. For example, the twist of the blades is taken into account and the “discrete” method is used for loss calculation instead of the “average” method.
Journal Article

Prediction and Control of Response Time of the Semitrailer Air Braking System

Abstract The response time of the air braking system is the main parameter affecting the longitudinal braking distance of vehicles. In this article, in order to predict and control the response time of the braking system of semitrailers, an AMESim model of the semitrailer braking system involving the relay emergency valve (REV) and chambers was established on the basis of analyzing systematically the working characteristics of the braking system in different braking stages: feedback braking, relay braking, and emergency braking. A semitrailer braking test bench including the brake test circuit and data acquisition system was built to verify the model with typical maneuver. For further evaluating the semitrailer braking response time, an experiment under different control pressures was carried out. Experimental results revealed the necessity of controlling the response time.
Journal Article

Speed Planning and Prompting System for Commercial Vehicle Based on Real-Time Calculation of Resistance

Abstract When commercial vehicles drive in a mountainous area, the complex road condition and long slopes cause frequent acceleration and braking, which will use 25% more fuel. And the brake temperature rises rapidly due to continuous braking on the long-distance downslopes, which will make the brake drum fail with the brake temperature exceeding 308°C [1]. Meanwhile, the kinetic energy is wasted during the driving progress on the slopes when the vehicle rolls up and down. Our laboratory built a model that could calculate the distance from the top of the slope, where the driver could release the accelerator pedal. Thus, on the slope, the vehicle uses less fuel when it rolls up and less brakes when down. What we do in this article is use this model in a real vehicle and measure how well it works.
Journal Article


The paper was originally published with the authors in the incorrect order. The correct author order should be as follows: Charlotte Fossier, Université de Lyon Dennis Barday, Volvo Group Christophe Changenet, Université de Lyon Fabrice Ville, Université de Lyon Vincent Berier, Volvo Group
Journal Article

Numerical Investigation of the Characteristics of Spray/Wall Interaction with Hybrid Breakup Model by Considering Nozzle Exit Turbulence

Abstract The spray/wall interaction plays a significant role on the mixture formation, combustion, and exhaust emissions. In the present study, the numerical code General Transport Equation Analysis (GTEA) is used to investigate the effect of fuel primary spray on the spray/wall interaction process. Taylor Analogy Breakup (TAB) model, Kelvin-Helmholtz-Rayleigh-Taylor (KH-RT) model, and Hybrid breakup (Hybrid) model are used to simulate the fuel spray process. By comparing the radius and height of the impinged spray, the performance of these breakup models is evaluated. Then, Bai and Gosman (BG) and Zhang and Jia (ZJ) spray/wall interaction models are implemented into GTEA code to describe the complicated spray/wall interaction process, and these interaction models are validated by the radius and height of the impinged spray and the size and velocity of the secondary droplets.
Journal Article

Identification and Quantification of Phosphate Ester-Based Hydraulic Fluid in Jet Fuel

Abstract Phosphate ester-based hydraulic fluids are commonly used in aviation, due to their fire-resistant properties. However, contamination of jet fuel with hydraulic fluid may cause serious engine failure, hot corrosion of metals, and swelling of elastomer and polymer seals. Identifying and quantifying hydraulic fluids in jet fuels using chromatography is challenging since common hydraulic fluids, such as ExxonMobil™ HyJet™ V and Skydrol™ LD-4, are composed of tri-butyl phosphate, the main peak of which overlaps with peaks from jet fuels in chromatograms. In this work, three techniques to separate and differentiate the jet fuel peaks from the tri-butyl phosphate peaks were developed. Two methods are based on a solid phase extraction (SPE) procedure followed by identification and quantification, which is carried out using a gas chromatograph equipped with a mass spectrometer or a flame ionization detector.
Journal Article

Innovative Approach of Wedge Washer to Avoid Bolt Loosening in Automotive Applications

Abstract Automotive vehicle includes various systems like engine, transmission, exhaust, air intake, cooling and many more systems. No doubt the performance of individual system depends upon their core design. But for performance, the system needs to be fastened properly. In automotive, most of the joints used fasteners which helps in serviceability of the components. There are more than thousands of fasteners used in the vehicle. At various locations, we found issue of bolt loosening and because of this design intent performance has not met by the system. During product development of ECS (Engine cooling system), various issues reported to loosening the bolt. The pre-mature failure of bolt loosening, increases the interest in young engineers for understanding the behavior of fastener in vehicle running conditions. This paper focuses on the design of wedge shape of washer to avoid bolt loosening.
Journal Article

Contribution of the Mechanical Linkage in Gear Shift Feel of North-South Transmission

Abstract Today’s automotive industry is facing cutthroat competition, especially in passenger vehicle business. Manufacturers around the globe are developing innovative and new products keeping focus on end customer; thus customer's opinion and perception about the product has become a factor of prime importance. Customer touch points such as gear shift lever, clutch, brakes, steering etc. are thus gaining more and more importance. Car companies are trying to induce more and more luxuries in these touch points so that they impress customer and create a positive opinion about the product. On the other hand manufacturers are also trying to manage profits. Companies thus need to find the best fit solution for improvising customer touch points with optimized costs. The performance of these touch points is driven by subsystems of mechanical components like mechanical linkage.
Journal Article

Fault Diagnosis Approach for Roller Bearings Based on Optimal Morlet Wavelet De-Noising and Auto-Correlation Enhancement

Abstract This article presents a fault diagnosis approach for roller bearing by applying the autocorrelation approach to filtered vibration measured signal. An optimal Morlet wavelet filter is applied to eliminate the frequency associated with interferential vibrations; the raw measured signal is filtered with a band-pass filter based on a Morlet wavelet function whose parameters are optimized based on maximum Kurtosis. Autocorrelation enhancement is applied to the filtered signal to further reduce the residual in-band noise and highlight the periodic impulsive feature. The proposed technique is used to analyze the experimental measured signal of investigated vehicle gearbox. An artificial fault is introduced in vehicle gearbox bearing an orthogonal placed groove on the inner race with the initial width of 0.6 mm approximately. The faulted bearing is a roller bearing located on the gearbox input shaft - on the clutch side.
Journal Article

Assessing Viscosity in Hydro-Erosive Grinding Process via Refractometry

Abstract The manufacturing of diesel injector nozzles requires precision processing to produce multiple micro-holes. An abrasive fluid containing a mixture of mineral oil and hard particles is used for rounding them, ensuring the hydrodynamics of the injection. As verified in a previous investigation, the viscosity of the fluid undergoes uncontrolled changes during hydro-erosive (HE) grinding. Such undesired viscosity changes are detrimental to the process and difficult to assess. The current investigation aims to study the possibility of using the refractive index of the oils used in the HE grinding for assessing their viscosities. A calibration curve correlating the refractive index and viscosity was obtained from the analysis of samples produced by mixing two distinct mineral oils in different proportions. The determined calibration curve was tested with 45 samples of filtered oil, collected directly from the tanks during the HE grinding.
Journal Article

Increased Thread Load Capability of Bolted Joints in Light Weight Design

Abstract Within the scope of today’s product development in automotive engineering, the aim is to produce lighter and solid parts with higher capabilities. On the one hand lightweight materials such as aluminum or magnesium are used, but on the other hand, increased stresses on these components cause higher bolt forces in joining technology. Therefore screws with very high strength rise in importance. At the same time, users need reliable and effective design methods to develop new products at reasonable cost in short time. The bolted joints require a special structural design of the thread engagement in low-strength components. Hence an extension of existing dimensioning of the thread engagement for modern requirements is necessary. In the context of this contribution, this will be addressed in two ways: on one hand extreme situations (low strength nut components and high-strength fasteners) are considered.
Journal Article

Classification of Contact Forces in Human-Robot Collaborative Manufacturing Environments

Abstract This paper presents a machine learning application of the force/torque sensor in a human-robot collaborative manufacturing scenario. The purpose is to simplify the programming for physical interactions between the human operators and industrial robots in a hybrid manufacturing cell which combines several robotic applications, such as parts manipulation, assembly, sealing and painting, etc. A multiclass classifier using Light Gradient Boosting Machine (LightGBM) is first introduced in a robotic application for discriminating five different contact states w.r.t. the force/torque data. A systematic approach to train machine-learning based classifiers is presented, thus opens a door for enabling LightGBM with robotic data process. The total task time is reduced largely because force transitions can be detected on-the-fly. Experiments on an ABB force sensor and an industrial robot demonstrate the feasibility of the proposed method.
Journal Article

Structural Optimization of a Pickup Frame Combining Thickness, Shape and Feature Parameters for Lightweighting

Abstract The methods for improving the torsion stiffness of a pickup chassis frame were discussed, including increasing the part thickness on frame, enlarging the cross section of rails, and adding bulkhead feature inside the rails. Sizing optimization was conducted to get the optimal thickness configuration for frame parts and meet the siffness requirement. The cross section of frame rails were parameterized and shape optimization was conduted to get the optimal rail cross sections for stiffness improvement. Additional bulkheads were added to the frame rails, and sizing optimization conducted to find the most effective bulkheads to add and their optimal gauge. A material efficiency ratio μ is used to evaluate the efficiency of a design change with respect to torsion stiffness. Among those torsion improvement methods, adding bulkhead feature gives the highest material efficiency ratio, but the stiffness improvement range is very limited.
Journal Article

Modeling the Effect of Foam Density and Strain Rate on the Compressive Response of Polyurethane Foams

Abstract Due to the high deformability and energy dissipation capacity of polymer foams in compression, they are used in automotive applications to mitigate mechanical impacts. The mechanical response of the foams is strongly affected by their density. Phenomenological relations have been proposed to describe the effect of foam density on their stress-strain response in compression at a fixed loading rate and the effect of loading rate at a fixed foam density. In the present work, these empirical approaches are combined allowing for the dependence of loading rate effect in compression on foam density. The minimum experimental data set for calibration of the proposed model consists of compression test results at two different loading rates of foams with two different densities.