Refine Your Search

Topic

Search Results

Journal Article

A Unique Application of Gasoline Particulate Filter Pressure Sensing Diagnostics

2021-08-06
Abstract Gasoline particulate filters (GPFs) are important aftertreatment components that enable gasoline direct injection (GDI) engines to meet European Union (EU) 6 and China 6 particulate number emissions regulations for nonvolatile particles greater than 23 nm in diameter. GPFs are rapidly becoming an integral part of the modern GDI aftertreatment system. The Active Exhaust Tuning (EXTUN) Valve is a butterfly valve placed in the tailpipe of an exhaust system that can be electronically positioned to control exhaust noise levels (decibels) under various vehicle operating conditions. This device is positioned downstream of the GPF, and variations in the tuning valve position can impact exhaust backpressures, making it difficult to monitor soot/ash accumulation or detect damage/removal of the GPF substrate. The purpose of this work is to present a unique example of subsystem control and diagnostic architecture for an exhaust system combining GPF and EXTUN.
Journal Article

Torque and Pressure CFD Correlation of a Torque Converter

2019-08-22
Abstract A torque converter was instrumented with 29 pressure transducers inside five cavities under study (impeller, turbine, stator, clutch cavity between the pressure plate and the turbine shell). A computer model was created to establish correlation with measured torque and pressure. Torque errors between test and simulation were within 5% and K-Factor and torque ratio errors within 2%. Turbulence intensity on the computer model was used to simulate test conditions representing transmission low and high line pressure settings. When turbulence intensity was set to 5%, pressure simulation root mean square errors were within 11%-15% for the high line pressure setting and up to 34% for low line pressure setting. When turbulence intensity was increased to 50% for the low line pressure settings, a 6% reduced root mean square error in the pressure simulations was seen.
Journal Article

Passive Flow Control on a Ground-Effect Diffuser Using an Inverted Wing

2018-08-13
Abstract In this experimental and computational study a novel application of aerodynamic principles in altering the pressure recovery behavior of an automotive-type ground-effect diffuser was investigated as a means of enhancing downforce. The proposed way of augmenting diffuser downforce production is to induce in its pressure recovery action a second pressure drop and an accompanying pressure rise region close to the diffuser exit. To investigate this concept with a diffuser-equipped bluff body, an inverted wing was situated within the diffuser flow channel, close to the diffuser exit. The wing’s suction surface acts as a passive flow control device by increasing streamwise flow velocity and reducing static pressure near the diffuser exit. Therefore, a second-stage pressure recovery develops along the diffuser’s overall pressure recovery curve as the flow travels from the diffuser’s low pressure, high velocity inlet to its high pressure, low velocity exit.
Journal Article

Tire Side Force Characteristics with the Coupling Effect of Vertical Load and Inflation Pressure

2018-11-09
Abstract The tire vertical load and inflation pressure have great influence on tire steady- and non-steady-state characteristics and, consequently, on the vehicle handling and stability. The objective of this article is to reveal the coupling effect of tire vertical load and inflation pressure on tire characteristics and then introduce an improved UniTire side force model including such coupling effect through experimental and theoretical analysis. First, the influence of the tire vertical load and inflation pressure on the tire characteristics is presented through experimental analysis. Second, the theoretical tire cornering stiffness and lateral relaxation length model are introduced to study the underlying mechanism of the coupling effect. Then, an improved UniTire side force model including the coupling effect of tire vertical load and inflation pressure is derived. Finally, the proposed improved UniTire side force model is validated through tire steady-state and transient data.
Journal Article

Multicriteria Optimization, Sensitivity Analysis, and Prediction of Bond Characteristics of Vacuum Diffusion Bonded Aero Engine Ti6Al4V Alloy Joints

2019-12-13
Abstract Joining titanium (Ti) alloys with conventional processes is difficult due to their complex structural properties and ability of phase transformation. Concerning all the difficulties, diffusion bonding is considered as an appropriate process for joining Ti alloys. Ti6Al4V, which is an α+β alloy widely used for aero engine component manufacturing, is diffusion bonded in this investigation. The diffusion bonding process parameters such as bonding temperature, bonding pressure, and holding time were optimized to achieve desired bonding characteristics such as shear strength, bonding strength, bonding ratio, and thickness ratio using response surface methodology (RSM). Empirical relationships were developed for the prediction of the bond characteristics, and sensitivity analysis was performed to determine the increment and decrement tendency of the shear strength with respect to the bonding parameters.
Journal Article

Mathematical Model of Heat-Controlled Accumulator (HCA) for Microgravity Conditions

2020-01-20
Abstract It is reasonable to use a two-phase heat transfer loop (TPL) in a thermal control system (TCS) of spacecraft with large heat dissipation. One of the key elements of TPL is a heat-controlled accumulator (HCA). The HCA represents a volume which is filled with vapor and liquid of a single working fluid without bellows. The pressure in a HCA is controlled by the heater. The heat and mass transfer processes in the HCA can proceed with a significant nonequilibrium. This has implications on the regulation of TPL. This article presents a mathematical model of nonequilibrium heat and mass transfer processes in an HCA for microgravity conditions. The model uses the equations of mass and energy conservation separately for the vapor and liquid phases. Interfacial heat and mass transfer is also taken into account. It proposes to use the convective component k for the level of nonequilibrium evaluation.
Journal Article

Improving Hole Expansion Ratio by Parameter Adjustment in Abrasive Water Jet Operations for DP800

2018-09-17
Abstract The use of Abrasive Water Jet (AWJ) cutting technology can improve the edge stretchability in sheet metal forming. The advances in technology have allowed significant increases in working speeds and pressures, reducing the AWJ operation cost. The main objective of this work was to determine the effect of selected AWJ cutting parameters on the Hole Expansion Ratio (HER) for a DP800 (Dual-Phase) Advanced High-Strength Steel (AHSS) with s0 = 1.2 mm by using a fractional factorial design of experiments for the Hole Expansion Tests (HET). Additionally, the surface roughness and residual stresses were measured on the holes looking for a possible relation between them and the measured HER. A deep drawing quality steel DC06 with s0 = 1.0 mm was used for reference. The fracture occurrence was captured by high-speed cameras and by Acoustic Emissions (AE) in order to compare both methods.
Journal Article

Technological Stability of the Liner in a Separable Metal Composite Pressure Vessel

2020-04-21
Abstract The article considers one of the possible mechanisms of loading the solidity of a cylindrical metal composite high-pressure vessel (MC HPV). This mechanism manifests itself as delamination of a thin-walled metal shell (liner) from a more rigid composite shell causing local buckling. A similar effect can be detected in the manufacturing process of MC HPV, when the composite shell is formed by winding with tension a carbon fiber-reinforced plastic tape on the liner. Pressure transfer from the composite shell to the liner is carried out by the method of temperature analogy, that is, by cooling the composite shell, thermally insulated from the liner. To solve the problem of externally confined liner local buckling an approach is proposed, which is based on three points: the introduction of local technological deviations inherent in actual structures, the determination of the general stress-strain state, and a real-time deforming.
Journal Article

Cause and Risk Factors of Maritime-Related Accidents for Aircraft

2022-08-26
Abstract With the growing number of cross-sea flights, the occurrence of maritime-related accidents, which have a high fatality rate, has become increasingly critical. This study is aimed at highlighting the causes of maritime-related accidents and identifying the risk factors that led to fatal crashes in the period 2009-2019. A total of 207 maritime-related accidents, the final reports of which are available in the online database of the National Transportation Safety Board, were considered. The accident cause distribution was obtained from the final reports. A two-step approach, involving uni-variable and multi-variable analysis logistic regression, was implemented to select the significant risk factors from 27 parameters. Results showed that the four main causes of maritime-related accidents were personnel issues (69.6%), aircraft-related aspects (60.4%), environmental issues (36.7%), and organizational issues (3.9%).
Journal Article

Water Body Survey, Inspection, and Monitoring Using Amphibious Hybrid Unmanned Aerial Vehicle

2021-02-04
Abstract Water quality monitoring is needed for the effective management of water resources. Periodic sampling and regular inspection/analysis allow one to classify water and identify changes or trends in water quality over time. This article presents a novel concept of an Amphibious Hybrid Unmanned Aerial Vehicle (AHUAV) that can operate in air and water for rapid water sampling, real-time water quality analysis, and water body management. A methodology using the developed AHUAV system for water body management has also been proposed for an easier and effective way of monitoring water bodies using advanced drone technologies. Using drones for water body management can be a cost-effective and efficient way of carrying out regular inspections and continual monitoring.
Journal Article

Modelling of a Variable Displacement Lubricating Pump with Air Dissolution Dynamics

2018-04-18
Abstract The simulation of lubricating pumps for internal combustion engines has always represented a challenge due to the high aeration level of the working fluid. In fact, the delivery pressure ripple is highly influenced by the effective fluid bulk modulus, which is significantly reduced by the presence of separated air. This paper presents a detailed lumped parameter model of a variable displacement vane pump with a two-level pressure setting, in which the fluid model takes into account the dynamics of release and dissolution of the air in the oil. The pump was modelled in the LMS Imagine.Lab Amesim® environment through customized libraries for the evaluation of the main geometric features. The model was validated experimentally in terms of pressure oscillations in conditions of low and high aeration. The fraction of separated air in the reservoir of the test rig was measured by means of an X-ray technique.
Journal Article

Development and Validation Procedure of a 1D Predictive Model for Simulation of a Common Rail Fuel Injection System Controlled with a Fuel Metering Valve

2018-07-10
Abstract A fully predictive one-dimensional model of a Common Rail injection apparatus for diesel passenger cars is presented and discussed. The apparatus includes high-pressure pump, high-pressure pipes, injectors, rail and a fuel-metering valve that is used to control the rail pressure level. A methodology for separately assessing the accuracy of the single submodels of the components is developed and proposed. The complete model of the injection system is finally validated by means of a comparison with experimental high-pressure and injected flow-rate time histories. The predictive model is applied to examine the fluid dynamics of the injection system during either steady-state or transient operations. The influence of the pump delivered flow-rate on the rail-pressure time history and on the injection performance is analysed for different energizing times and nominal rail pressure values.
Journal Article

Prediction and Control of Response Time of the Semitrailer Air Braking System

2019-05-09
Abstract The response time of the air braking system is the main parameter affecting the longitudinal braking distance of vehicles. In this article, in order to predict and control the response time of the braking system of semitrailers, an AMESim model of the semitrailer braking system involving the relay emergency valve (REV) and chambers was established on the basis of analyzing systematically the working characteristics of the braking system in different braking stages: feedback braking, relay braking, and emergency braking. A semitrailer braking test bench including the brake test circuit and data acquisition system was built to verify the model with typical maneuver. For further evaluating the semitrailer braking response time, an experiment under different control pressures was carried out. Experimental results revealed the necessity of controlling the response time.
Journal Article

Ducted Fuel Injection versus Conventional Diesel Combustion: An Operating-Parameter Sensitivity Study Conducted in an Optical Engine with a Four-Orifice Fuel Injector

2020-04-13
Abstract Ducted fuel injection (DFI) has been shown to attenuate engine-out soot emissions from diesel engines. The concept is to inject fuel through a small tube within the combustion chamber to enable lower equivalence ratios at the autoignition zone, relative to conventional diesel combustion. Previous experiments have demonstrated that DFI enables significant soot attenuation relative to conventional diesel combustion for a small set of operating conditions at relatively low engine loads. This is the first study to compare DFI to conventional diesel combustion over a wide range of operating conditions and at higher loads (up to 8.5 bar gross indicated mean effective pressure) with a four-orifice fuel injector. This study compares DFI to conventional diesel combustion through sweeps of intake-oxygen mole fraction (XO2), injection duration, intake pressure, start of combustion (SOC) timing, fuel-injection pressure, and intake temperature.
Journal Article

The Use of Canola Oil, n-Hexane, and Ethanol Mixtures in a Diesel Engine

2021-07-06
Abstract Environmental protection and the depletion of nonrenewable energy sources necessitate the search for the replacement of, among others, diesel fuel (Df) in diesel engines with renewable fuel without major structural changes. For this reason, vegetable oils are of interest as a possible fuel for this type of engine. Unfortunately, the physicochemical properties of vegetable oils differ significantly from Df. In addition to the boiling and freezing points, these properties include viscosity, density, and surface tension as well as wetting properties. For this reason, an attempt was made to modify these properties by adding n-hexane (Hex) and ethanol (Et) to canola oil (Co). The viscosity, density, surface tension, and wetting properties of Hex and Et are significantly different from those for Co.
Journal Article

Uncertainty Assessment of Octane Index Framework for Stoichiometric Knock Limits of Co-Optima Gasoline Fuel Blends

2018-10-25
Abstract This study evaluates the applicability of the Octane Index (OI) framework under conventional spark ignition (SI) and “beyond Research Octane Number (RON)” conditions using nine fuels operated under stoichiometric, knock-limited conditions in a direct injection spark ignition (DISI) engine, supported by Monte Carlo-type simulations which interrogate the effects of measurement uncertainty. Of the nine tested fuels, three fuels are “Tier III” fuel blends, meaning that they are blends of molecules which have passed two levels of screening, and have been evaluated to be ready for tests in research engines. These molecules have been blended into a four-component gasoline surrogate at varying volume fractions in order to achieve a RON rating of 98. The molecules under consideration are isobutanol, 2-butanol, and diisobutylene (which is a mixture of two isomers of octene). The remaining six fuels were research-grade gasolines of varying formulations.
Journal Article

Development of a Novel Machine Learning Methodology for the Generation of a Gasoline Surrogate Laminar Flame Speed Database under Water Injection Engine Conditions

2019-11-19
Abstract The water injection is one of the technologies assessed in the development of new internal combustion engines fulfilling new emission regulation and policy on Auxiliary Emission Strategy assessment. Besides all the positive aspects about the reduction of mixture temperature at top dead center and exhaust gases temperature at turbine inlet, it is well known that the water vapor acts as a mixture diluter, thus diminishing the reactants burning rate. A common methodology employed for the Reynolds-Averaged Navier-Stokes Computational Fluid Dynamics (RANS CFD) simulation of the reciprocating internal combustion engines’ turbulent combustion relies on the flamelet approach, which requires knowledge of the Laminar Flame Speed (LFS) and thickness. Typically, these properties are calculated by means of correlation laws, but they do not keep into account the presence of water mass fraction. A more precise methodology for the definition of both the LFS and thickness is thus required.
Journal Article

The Knock Propensity of Carbon Dioxide-Containing Natural Gases: Effect of Higher Hydrocarbons on Knock-Mitigating Influence of Carbon Dioxide

2020-12-16
Abstract To assess the effect of the presence of carbon dioxide (CO2) in natural gases on the knock resistance of fuel, the knock behavior of a lean-burn, high-speed medium Brake Mean Effective Pressure (BMEP) Combined Heat and Power (CHP) engine fueled with CH4 + 8 mole% C3H8 mixtures. The engine experiments are supplemented with ignition measurements and simulations of ignition and cylinder processes for various fuel compositions. The engine results show that increasing the fraction of CO2 results in an increase in knock resistance. The analysis of simulations of cylinder processes shows that for binary mixtures (CH4/CO2) and ternary mixtures (CH4/C3H8/CO2) the increase in knock resistance with increasing CO2 fraction is caused by the reduction in peak pressure/temperature, which consequently increases the autoignition delay time of the mixture.
Journal Article

Limitations of Monoolein in Simulating Water-in-Fuel Characteristics of EN590 Diesel Containing Biodiesel in Water Separation Testing

2018-10-18
Abstract In modern diesel fuel a proportion of biodiesel is blended with petro-diesel to reduce environmental impacts. However, it can adversely affect the operation of nonwoven coalescing filter media when separating emulsified water from diesel fuel. This can be due to factors such as increasing water content in the fuel, a reduction in interfacial tension (IFT) between the water and diesel, the formation of more stable emulsions, and the generation of smaller water droplets. Standard water/diesel separation test methods such as SAE J1488 and ISO 16332 use monoolein, a universal surface-active agent, to simulate the effects of biodiesel on the fuel properties as part of water separation efficiency studies. However, the extent to which diesel/monoolein and diesel/biodiesel blends are comparable needs to be elucidated if the underlying mechanisms affecting coalescence of very small water droplets in diesel fuel with a low IFT are to be understood.
Journal Article

A Multiscale Cylinder Bore Honing Pattern Lubrication Model for Improved Engine Friction

2019-07-02
Abstract Three-dimensional patterns representing crosshatched plateau-honed cylinder bores based on two-dimensional Fast Fourier Transform (FFT) of measured surfaces were generated and used to calculate pressure flow, shear-driven flow, and shear stress factors. Later, the flow and shear stress factors obtained by numerical simulations for various surface patterns were used to calculate lubricant film thickness and friction force between piston ring and cylinder bore contact in typical diesel engine conditions using a mixed lubrication model. The effects of various crosshatch honing angles, such as 30°, 45°, and 60°, and texture heights on engine friction losses, wear, and oil consumption were discussed in detail. It is observed from numerical results that lower lubricant film thickness values are generated with higher honing angles, particularly in mixed lubrication regime where lubricant film thickness is close to the roughness level, mainly due to lower resistance to pressure flow.
X