Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Influence of the Spatially Resolved Nozzle Hole Exit Flow Distribution on Diesel Spray Development

2007-09-16
2007-24-0025
The internal flow in Diesel injector nozzles significantly affects the spray formation, atomisation and air/fuel mixing rates. A multi-dimensional model has been developed to numerically predict the spray evolution patterns with particular focus on capturing the influence of the injector nozzle flow on the near-nozzle spray dispersion. The link to the internal flow is established by using as initial conditions for the injected fuel, the transiently and spatially resolved distribution of the flow field at the nozzle hole exit plane as calculated from a multi-dimensional and multi-phase nozzle flow simulation model. The local spray dispersion angle is estimated by assuming that the disintegration of the liquid jet is function of the distribution of liquid velocity, cavitation vapour volume fraction and liquid turbulence level at the exit of the injection hole.
Technical Paper

Link Between Cavitation Development and Erosion Damage in Diesel Injector Nozzles

2007-04-16
2007-01-0246
Cavitation formation and development inside Diesel injector nozzles suffering from erosion damage has been investigated using enlarged transparent nozzle replicas and computational fluid dynamics (CFD) simulations. Cavitation erosion has been observed at different locations within the nozzle. These have included the top surface inside the nozzle hole next to its entry, the 3o'clock and 9c'clock hole side-inlets as well as at the needle seat area. Instantaneous and time-averaged high-speed CCD images of cavitation have verified that cavitation erosion sites are found in areas of cavitation bubble collapse. This has been further supported by CFD predictions obtained using the measured injection pressure and needle lift traces, both for the pilot and main injection events. The cavitating flow regimes associated with these erosion sites correspond to geometrically-induced hole cavitation, the string cavitation and the needle seat cavitation, respectively.
Technical Paper

Cavitation in Fuel Injection Systems for Spray-Guided Direct Injection Gasoline Engines

2007-04-16
2007-01-1418
Cavitation formation and development inside various types of nozzles for close-spacing spray-guided fuel injection systems is predicted using a computational fluid dynamics cavitation model. The fuel injection systems investigated include generic geometries of multi-hole nozzles and outwards opening pintle injectors. Model validation is performed against experimental data reported elsewhere in large-scale transparent nozzle replicas. The results confirm that cavitation strongly depends on the geometry of the nozzle and the operating conditions. For multi-hole nozzles, cavitation structures similar to those realised in Diesel injectors are formed. These include the needle seat cavitation realised at low needle lifts, the geometrically-induced hole entry cavitation and string cavitation developing inside the sac volume. A more chaotic and less understood cavitation pattern develops at the sealing area of inward seal band outwards opening nozzles.
Technical Paper

LES Predictions of the Vortical Flow Structures in Diesel Injector Nozzles

2009-04-20
2009-01-0833
Vortex flow realized inside the sac volume and the injection holes of automotive and heavy duty injectors plays an important role in the formation and development of cavitation and the near-nozzle structure of the emerging fuel sprays. Large-scale vortical flow structures are mainly induced by the geometric details of the injector. Vortex flow may be also induced by eccentric needle opening as well as the manufacturing tolerances of locations critical to the nozzle geometry such as the hole entry shape. The present paper assesses the predictive capability of a Large Eddy Simulation model against LDV measurements of the flow velocity obtained inside a transparent nozzle replica. Model predictions are compared also with RANS model predictions obtained using the standard k-ε model.
Technical Paper

The Influence of Variable Fuel Properties in High-Pressure Diesel Injectors

2009-04-20
2009-01-0832
High pressurization of Diesel fuel in modern common-rail injectors, in addition to its effect on spray atomization, can result to increase of fuel density and viscosity in comparison to atmospheric conditions; moreover, due to the sharp de-pressurization experienced by the fuel at the inlet of the injection holes significant gradients of the above properties are established. Consequently, the characteristics of cavitation taking place at the entrance to the injection holes are affected. The present study quantifies the role of these effects in automotive Diesel injectors operating at pressures in excess of 1500 bar through use of a cavitation CFD model. The flow solver is accordingly modified to account for such effects during the solution of the conservation equations. Two different injector designs have been considered, both based on the same sac-type nozzle body; one with sharp-inlet cylindrical holes and one with tapered holes with inlet rounding.
Technical Paper

Structure of high-pressure diesel sprays

2001-09-23
2001-24-0009
A comprehensive set of computational and experimental results for high- pressure diesel sprays are presented and discussed. The test cases investigated include injection of diesel into air under both atmospheric and high pressure/temperature chamber conditions, injection against pressurized and cross-flowing CF6 simulating respectively the density and flow conditions of a diesel engine at the time of injection, as well as injection into the piston bowl of both research and production turbocharged high-speed DI diesel engines. A variety of high-pressure injection systems and injector nozzles have been used including mechanical and electronic high-pressure pumps as well as common-rail systems connected to nozzles incorporating a varying number of holes with diameters ranging from conventional to micro-size.
Technical Paper

Prediction of Liquid and Vapor Penetration of High Pressure Diesel Sprays

2006-04-03
2006-01-0242
A dense-particle Eulerian-Lagrangian stochastic methodology, able to resolve the dense spray formed at the nozzle exit has been applied to the simulation of evaporating diesel sprays. Local grid refinement at the area where the spray evolves allows use of cells having sizes from 0.6 down to 0.075mm. Mass, momentum and energy source terms between the two phases are spatially distributed to cells found within a distance from the droplet centre; this has allowed for grid-independent interaction between the Eulerian and the Lagrangian phases to be reached. Additionally, various models simulating the physical processes taking place during the development of sprays are considered. The cavitating nozzle flow is used to estimate the injection velocity of the liquid while its effect on the spray formation is considered through an atomisation model predicting the initial droplet size.
Technical Paper

An Adjoint Method for Hole Cavitating Control Through Inverse Nozzle Design

2006-04-03
2006-01-0892
A mathematical methodology is proposed for the computational inverse design of nozzle shapes producing controlled geometric cavitation. The proposed methodology uses an unstructured RANS flow solver, with the ability to compute sensitivity derivatives via an Adjoint algorithm and independently of the shape parameterisation. The method is used to develop and evaluate conceptual shapes for nozzle hole cavitation reduction. The localised region at the hole inlet where geometric-cavitation is produced, is parameterised using its radius of curvature. The parameterisation method is an empirical curvature fit method suitable for the design and manufacturing of such nozzles. In order to validate the efficiency of the proposed method, the optimisation problem is handled as an inverse design one. The objective function is formed using a target pressure distribution where the negative pressure area is narrowed or even eliminated.
X