Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Standardized Electrical Power Quality Analysis in Accordance with MIL-STD-704

MIL-STD-704 defines power quality in terms of transient, steady-state, and frequency-domain metrics that are applicable throughout a military aircraft electric power system. Maintaining power quality in more electric aircraft power systems has become more challenging in recent years due to the increase in load dynamics and power levels in addition to stricter requirements of power system characteristics during a variety of operating conditions. Further, power quality is often difficult to assess directly during experiments and aircraft operation or during data post-processing for the integrated electric power system (including sources, distribution, and loads). While MIL-STD-704 provides guidelines for compliance testing of electric load equipment, it does not provide any instruction on how to assess the power quality of power sources or the integrated power system itself, except the fact that power quality must be satisfied throughout all considered operating conditions.
Technical Paper

Benefits Assessment of More Electric Aircraft Generation II Technologies

The Air Force Research Laboratory is currently funding efforts under the More-Electric Aircraft (MEA) Generation II Study for developing a preliminary design of an electrical power generation and distribution system (EPGDS) for flight demonstration of an Internal Starter/Generator (IS/G) for the main engine on an advanced fighter-class aircraft. The MEA Initiative is a phased, goal-oriented, effort that develops technologies to enable the use of electrical power to perform aircraft functions that historically have been powered hydraulically, mechanically, or pneumatically. The use of electrical power for these functions has the potential for enhanced aircraft performance through improved efficiency, reliability, maintainability, and supportability. Today, the MEA effort is in its second phase, with an anticipated technology availability date of 2005.
Journal Article

Electrical Accumulator Unit for the Energy Optimized Aircraft

The movement to more-electric architectures during the past decade in military and commercial airborne systems continues to increase the complexity of designing and specifying the electric power system. In particular, the electrical power system (EPS) faces challenges in meeting the highly dynamic power demands of advanced power electronics based loads. This paper explores one approach to addressing these demands by proposing an electrical equivalent of the widely utilized hydraulic accumulator which has successfully been employed in hydraulic power system on aircraft for more than 50 years.