Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2016-32-0041
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Journal Article

Engine Cooling Module Sizing Using Combined 1-Dimensional and CFD Modeling Tools

2009-04-20
2009-01-1177
Engine cooling module air flows depend on package components and vehicle front end geometry. For years, in the early stages of vehicle development, front end geometry air flows were determined from 3/8 scale models or retrofit of similar existing vehicles. As time to market has become much shorter, finite element modeling of air flows is the only tool available. This paper describes how finite element simulations of front end air flows can be run early in the development program independent of any specific engine cooling module configuration and then coupled with traditional one-dimensional component performance models to predict cooling module air flows. The CFD simulation thus replaces the previous scale model testing process. The CFD simulations are used to determine the two parameters that characterize the front end geometry flow resistance (recovery coefficient and internal loss coefficient).
Journal Article

Vehicle Chassis, Body, and Seat Belt Buckle Acceleration Responses in the Vehicle Crash Environment

2009-04-20
2009-01-1246
For over 30 years, field research and laboratory testing has consistently demonstrated that proper utilization of a seat belt dramatically reduces the risk of occupant death or serious injury in motor vehicle crashes. The injury prevention benefits of seat belts require that they remain fastened during collisions. Federal Motor Vehicle Safety Standards and SAE Recommended Practices set forth seat belt requirements to ensure proper buckle performance in accident conditions. Numerous analytical and laboratory studies have investigated buckle inertial release properties. Studies have repeatedly demonstrated that current buckle designs have inertial release thresholds well above those believed to occur in real-world crashes. Nevertheless, inertial release theories persist. Various conceptual amplification theories, coupled with high magnitude accelerations measured on vehicle frame components are used as support for these release theories.
Journal Article

Using LES for Predicting High Performance Car Airbox Flow

2009-04-20
2009-01-1151
Aerodynamic had played a primary role in high performance car since the late 1960s, when introduction of the first inverted wings appeared in some formulas. Race car aerodynamic optimisation is one of the most important reason behind the car performance. Moreover, for high performance car using naturally aspired engine, car aerodynamic has a strong influence also on engine performance by its influence on the engine airbox. To improve engine performance, a detailed fluid dynamic analysis of the car/airbox interaction is highly recommended. To design an airbox geometry, a wide range of aspects must be considered because its geometry influences both car chassis design and whole car aerodynamic efficiency. To study the unsteady fluid dynamic phenomena inside an airbox, numerical approach could be considered as the best way to reach a complete integration between chassis, car aerodynamic design, and airbox design.
Journal Article

Study on a High Torque Density Motor for an Electric Traction Vehicle

2009-04-20
2009-01-1337
A compact and high performance electric motor, called the 3D motor and designed to achieve output torque density of 100 Nm/L, was developed for use on electric vehicles and hybrid electric vehicles. The motor adopts an axial flux configuration, consisting of a disk-shaped stator sandwiched between two disk-shaped rotors with permanent magnets. It also adopts 9-phase current with a fractional slot combination, both of which increase the torque density. The rated torque output of this high power-density motor is achieved by applying a hybrid cooling system comprising a water jacket on the outer case of the stator and oil dispersion into the air gaps. The mechanical strength of the rotors against centrifugal force and that of the stator against torque exertion were confirmed in mechanical experiments. Several measures such as flux barriers, a chamfered rotor rim, parallel windings, and radially laminated cores were adopted to suppress losses.
Journal Article

Thermal Considerations for Meeting 20°C and Stringent Temperature Gradient Requirements of IXO SXT Mirror Modules

2009-07-12
2009-01-2391
The Soft X-Ray Telescope (SXT) is an instrument on the International X-Ray Observatory (IXO). Its flight mirror assembly (FMA) has a single mirror configuration that includes a 3.3 m diameter and 0.93 m tall mirror assembly. It consists of 24 outer modules, 24 middle modules and 12 inner modules. Each module includes more than 200 mirror segments. There are a total of nearly 14, 000 mirror segments. The operating temperature requirement of the SXT FMA is 20°C. The spatial temperature gradient requirement between the FMA modules is ±1°C or smaller. The spatial temperature gradient requirement within a module is ±0.5°C. This paper presents thermal design considerations to meet these stringent thermal requirements.
Journal Article

Improved Accuracy of Unguided Articulated Robots

2009-11-10
2009-01-3108
The effectiveness of serial link articulated robots in aerospace drilling and fastening is largely limited by positional accuracy. Unguided production robotic systems are practically limited to +/-0.5mm, whereas the majority of aerospace applications call for tolerances in the +/-0.25mm range. The precision with which holes are placed on an aircraft structure is affected by two main criteria; the volumetric accuracy of the positioner, and how the system is affected when an external load is applied. Production use and testing of off-the-shelf robots has highlighted the major contributor to reduced stiffness and accuracy as being error ahead of the joint position feedback such as backlash and belt stretch. These factors affect the omni-directional repeatability, thus limiting accuracy, and also contribute to deflection of the tool point when process forces are applied.
Journal Article

Application of Extension Evaluation Method in Development of Novel Eco-friendly Brake Materials

2009-10-11
2009-01-3019
Extenics is a new cross discipline to study rules and methods of solving contradictory problems in the real world. The basic concepts and theoretical frame of extenics are briefly introduced in this paper. Based on the merit of extenics, the extension evaluation method was applied to evaluate the brake materials according to a five-grade criterion established in this study. Considering the results computed by the original and simplified models, the similar conclusions were made: all four brake samples, marked A - D, were evaluated in the first grade based on the calculated dependence degrees, and sample B was judged as the best performing friction material with the highest dependence degree and the lowest wear rate.
Journal Article

Solution for Automated Drilling and Lockbolt Installation in Carbon Fiber Structures

2009-11-10
2009-01-3214
Manual drilling and Lockbolt installation in carbon fiber structures is a labor intensive process. To reduce man hour requirements while concurrently improving throughput and process quality levels BROETJE-Automation developed a gantry positioning system with high performance multi-function end effectors for this application. This paper presents a unique solution featuring fully automated drilling and Lockbolt installation (inclusive of automated collar installation) for the vertical tail plane (vertical stabilizer) of large commercial aircraft. A flexible and reconfigurable assembly jig facilitates high access of the end effectors and increases the equipment efficiency. The described system fulfils the demand for affordable yet flexible precision manufacturing with the capacity to handle different aircraft model panels within the work envelope.
Journal Article

Protection of the C-17 Airplane during Semi Prepared Runway Operations

2009-11-10
2009-01-3203
The C-17 airplane operates in some of the most challenging environments in the world including semi prepared runway operations (SPRO). Typical semi-prepared runways are composed of a compacted soil aggregate of sand, silt, gravel, and rocks. When the airplane lands or takes off from a semi-prepared runway, debris, including sand, gravel, rocks and, mud is kicked up from the nose landing gear (NLG) and the main landing gear (MLG) tires. As the airplane accelerates to takeoff or decelerates from landing touchdown, this airborne debris impacts the underbelly and any component mounted on the underbelly. The result is the erosion of the protective surface coating and damage to systems that protrude below the fuselage into the debris path. The financial burden caused by SPRO damage is significant due to maintenance costs, spares costs and Non-Mission Capable (NMC) time.
Journal Article

Experimental Techniques of Measuring Vibratory Force for Aircraft Wings

2009-11-10
2009-01-3283
The authors measured the vibratory forces acting on an airfoil model by performing a ground vibration test (GVT). The airfoil model was manufactured using rapid prototyping. In the experiments, the airfoil model's structural response was also recorded and described. This paper detailedly introduces the entire experiment process and the obtained experimental data agreed well to the actual values.
Journal Article

Liquid Jet Deformation Induced by Cavitation in Nozzles of Various Shapes

2009-09-13
2009-24-0157
Cavitation in the nozzles of various shapes and liquid jets discharged from the nozzles are visualized using a high-speed camera to investigate the effects of cavitation on liquid jet deformation. Cylindrical nozzles and two-dimensional (2D) nozzles of various upstream diameters and length-to-diameter ratios (L/D) are used. For simultaneous high-speed visualizations of cavitation and a jet, a tilted acrylic plate is placed in front of the jets injected through the 2D nozzles, while three mirrors are used to capture both the front view of the jet injected through a cylindrical nozzle and the side view of cavitation. The visualizations confirm that the collapse of a cavitation cloud near the exit induces a ligament formation in 2D and cylindrical nozzles of various L/Ds. Although no vapor film is formed in short nozzles, cavitation clouds are shed near the exit and induce ligaments.
Journal Article

1-g Suit Port Concept Evaluator 2008 Test Results

2009-07-12
2009-01-2572
The Lunar Electric Rover (LER), which was formerly called the Small Pressurized Rover (SPR), is currently being carried as an integral part of the lunar surface architectures that are under consideration in the Constellation Program. One element of the LER is the suit port, which is the means by which crew members perform Extravehicular Activities (EVAs). Two suit port deliverables were produced in fiscal year 2008: a 1-g suit port concept evaluator for functional integrated testing with the LER 1-g concept vehicle and a functional and pressurizable Engineering Unit (EU). This paper focuses on the 1-g suit port concept evaluator test results from the Desert Research and Technology Studies (D-RATS) October 2008 testing at Black Point Lava Flow (BPLF), Arizona. The 1-g suit port concept evaluator was integrated with the 1-g LER cabin and chassis concepts.
Journal Article

Mitigating Heavy Truck Rear-End Crashes with the use of Rear-Lighting Countermeasures

2010-10-05
2010-01-2023
In 2006, there were approximately 23,500 rear-end crashes involving heavy trucks (i.e., gross vehicle weight greater than 4,536 kg). The Enhanced Rear Signaling (ERS) for Heavy Trucks project was developed by the Federal Motor Carrier Safety Administration (FMCSA) to investigate methods to reduce or mitigate those crashes where a heavy truck has been struck from behind by another vehicle. Visual warnings have been shown to be effective, assuming the following driver is looking directly at the warning display or has his/her eyes drawn to it. A visual warning can be placed where it is needed and it can be designed so that its meaning is nearly unambiguous. FMCSA contracted with the Virginia Tech Transportation Institute (VTTI) to investigate potential benefit of additional rear warning-light configurations as rear-end crash countermeasures for heavy trucks.
Journal Article

Free-Form Optimization Method for Designing Automotive Shell Structures

2011-04-12
2011-01-0064
In this paper, we present a parameter-free, or a node-based optimization method for finding the smooth optimal free-form of automotive shell structures, including global and local curvature distributions such as beads or embossed ribs. The design problems dealt with in this paper involve a stiffness problem. Stiffness is maximized using the compliance as an objective functional. The optimum design problem is formulated as a distributed-parameter, or non-parametric, shape optimization problem under the assumptions that the shell is varied in the normal direction to the surface and the thickness is constant. The shape gradient function and the optimality conditions are then theoretically derived. The optimum free-form, or optimal curvature distribution, is determined by applying the derived shape gradient function in the normal direction to the shell surface as pseudo external forces to vary the surface and to minimize the objective functional.
Journal Article

Introduction of New Concept U*sum for Evaluation of Weight-Efficient Structure

2011-04-12
2011-01-0061
A new index U* for evaluating load path dispersion is proposed, using a structural load path analysis method based on the concept of U*, which expresses the connection strength between a load point and an arbitrary point within the structure. U* enables the evaluation of the load path dispersion within the structure by statistical means such as histograms and standard deviations. Different loading conditions are applied to a body structure, and the similarity of the U* distributions is evaluated using the direction cosine and U* 2-dimensional correlation diagrams. It is shown as a result that body structures can be macroscopically grasped by using the U* distribution rather than using the stress distribution. In addition, as an example, the U* distribution of torsion loading condition is shown to comprehensively include characteristics of the U* distribution of other loading conditions.
Journal Article

Structural Optimization for Vehicle Dynamics Loadcases

2011-04-12
2011-01-0058
As mass reduction becomes an increasingly important enabler for fuel economy improvement, having a robust structural development process that can comprehend Vehicle Dynamics-specific requirements is correspondingly important. There is a correlation between the stiffness of the body structure and the performance of the vehicle when evaluated for ride and handling. However, an unconstrained approach to body stiffening will result in an overly-massive body structure. In this paper, the authors employ loads generated from simulation of quasi-static and dynamic vehicle events in ADAMS, and exercise structural finite element models to recover displacements and deflected shapes. In doing so, a quantitative basis for considering structural vehicle dynamics requirements can be established early in the design/development process.
Journal Article

The Effectiveness of Curtain Side Air Bags in Side Impact Crashes

2011-04-12
2011-01-0104
Accident data show that the head and the chest are the most frequently injured body regions in side impact fatal accidents. Curtain side air bag (CSA) and thorax side air bag (SAB) have been installed by manufacturers for the protection devices for these injuries. In this research, first we studied the recent side impact accident data in Japan and verified that the head and chest continued to be the most frequently injured body regions in fatal accidents. Second, we studied the occupant seating postures in vehicles on the roads, and found from the vehicle's side view that the head location of 56% of the drivers was in line or overlapped with the vehicle's B-pillar. This observation suggests that in side collisions head injuries may occur frequently due to contacts with the B-pillar. Third, we conducted a side impact test series for struck vehicles with and without CSA and SAB.
Journal Article

Influence of Vehicle Front End Design on Pedestrian Lower Leg Performance for SUV Class Vehicle

2011-04-12
2011-01-0084
Accident statistics shows pedestrian accident fatalities as one of the important concerns globally. In view of this, new test protocols for pedestrian safety have been drafted in regulation as well as in consumer group. Also as per new ENCAP requirements, pedestrian safety assessment is used as one of the four assessment criteria's (Adult protection, child safety, pedestrian safety, safety assist) in deciding the overall vehicle safety. Hence today importance of pedestrian safety is perceived as never before in vehicle development program. Basically pedestrian safety evaluation involves subsystem level (head form, upper leg form and lower leg form) impact tests representing human body parts, at specific region on test vehicle with injury limits to decide the severity of impact. In general these injuries are governed by vehicle styling, vehicle stiffness, hard points clearances from vehicle exterior like bonnet, bumper etc.
Journal Article

Identification of Object Impact Location and Bumper Stiffness Curve for Pedestrian Protection System

2011-04-12
2011-01-0083
A method for identification of object impact location and bumper stiffness curve is presented in this paper. The method calculates an offset distance of object impact based on intrusions obtained from three accelerometers mounted in the bumper fascia. The method also evaluates a center strength based on an absolute sum of acceleration. A characteristic line has been introduced in a two-dimensional domain consisting of intrusion-based offset and center strength. When test data are projected onto the characteristic line, an improved object impact location can be achieved. An intrusion curve over offset distance is obtained for impact tests striking at different locations with the same object and same speed. Then, a bumper stiffness curve can be identified by taking a reciprocal of the intrusion curve. This study shows a bumper stiffness curve can be used for an impact object classification for the pedestrian protection system.
X