Refine Your Search

Topic

Search Results

Standard

Class A Multiplexing Sensors

2022-12-20
CURRENT
J2057/3_202212
The Class A Task Force of the Vehicle Network for Multiplexing and Data Communications Subcommittee is providing information on sensors that could be applicable for a Class A Bus application. Sensors are generally defined as any device that inputs information onto the bus. Sensors can be an input controlled by the operator or an input that provides the feedback or status of a monitored vehicle function. Although there is a list of sensors provided, this list is not all-inclusive. This SAE Information Report is intended to help the network system engineer and is meant to stimulate the design thought process.
Standard

Class A Multiplexing Sensors

2006-09-12
HISTORICAL
J2057/3_200609
The Class A Task Force of the Vehicle Network for Multiplexing and Data Communications Subcommittee is providing information on sensors that could be applicable for a Class A Bus application. Sensors are generally defined as any device that inputs information onto the bus. Sensors can be an input controlled by the operator or an input that provides the feedback or status of a monitored vehicle function. Although there is a list of sensors provided, this list is not all-inclusive. This SAE Information Report is intended to help the network system engineer and is meant to stimulate the design thought process.
Standard

Class B Data Communication Network Messages—Part 3—Frame IDs for Single-Byte Forms of Headers

2004-07-27
HISTORICAL
J2178/3_200407
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte is given in SAE J1850.
Standard

Class B Data Communication Network Messages—Part 3—Frame IDs for Single-Byte Forms of Headers

1999-03-01
HISTORICAL
J2178/3_199903
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte is given in SAE J1850.
Standard

Class B Data Communication Network Messages - Part 3 - Frame IDs for Single-Byte Forms of Headers

2011-05-02
CURRENT
J2178/3_201105
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, electrical specifications, and the CRC byte is given in SAE J1850.
Standard

CLASS B DATA COMMUNICATION NETWORK MESSAGES—PART 3 FRAME IDs FOR SINGLE BYTE FORMS OF HEADERS

1993-09-01
HISTORICAL
J2178/3_199309
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for nondiagnostic messages. Refer to SAE J1979 for specifications of emissions-related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic message header and data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC field are given in SAE J1850.
Standard

Class B Data Communication Network Messages - Message Definitions for Three Byte Headers

2011-04-01
CURRENT
J2178/4_201104
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850.
Standard

Class A Application/Definition

2022-12-20
CURRENT
J2057/1_202212
This SAE Information Report will explain the differences between Class A, B, and C networks and clarify through examples, the differences in applications. Special attention will be given to a listing of functions that could be attached to a Class A communications network.
Standard

Class A Application/Definition

2006-09-12
HISTORICAL
J2057/1_200609
This SAE Information Report will explain the differences between Class A, B, and C networks and clarify through examples, the differences in applications. Special attention will be given to a listing of functions that could be attached to a Class A communications network.
Standard

Class B Data Communication Network Messages - Detailed Header Formats and Physical Address Assignments

2011-04-01
CURRENT
J2178/1_201104
This SAE Recommended Practice defines the information contained in the header and data fields of non-diagnostic messages for automotive serial communications based on SAE J1850 Class B networks. This document describes and specifies the header fields, data fields, field sizes, scaling, representations, and data positions used within messages. The general structure of a SAE J1850 message frame without in-frame response is shown in Figure 1. The structure of a SAE J1850 message with in-frame response is shown in Figure 2. Figures 1 and 2 also show the scope of frame fields defined by this document for non-diagnostic messages. Refer to SAE J1979 for specifications of emissions related diagnostic message header and data fields. Refer to SAE J2190 for the definition of other diagnostic data fields. The description of the network interface hardware, basic protocol definition, the electrical specifications, and the CRC byte are given in SAE J1850.
Standard

High Speed CAN (HSC) for Vehicle Applications at 125 Kbps

2002-03-07
HISTORICAL
J2284/1_200203
This document will define the Physical Layer and portions of the Data Link Layer of the ISO model for a 125 Kbps High Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 125 Kbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 6 of this document. This document is designed such that if the Electronic Control Unit requirements defined in Section 6 are met, then the system level attributes should be obtainable. This document will address only requirements which may be tested at the ECU and media level.
Standard

High Speed CAN (HSC) for Vehicle Applications at 125 kbps

2016-11-21
HISTORICAL
J2284/1_201611
This SAE Recommended Practice will define the Physical Layer and portions of the Data Link Layer of the Open Systems Interconnection model (ISO 7498) for a 125 kbps High Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 125 kbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 5 of this document. This document is designed such that if the Electronic Control Unit requirements defined in Section 6 are met, then the system level attributes should be obtainable.
Standard

High Speed CAN (HSC) for Vehicle Applications at 250 Kbps

2002-03-07
HISTORICAL
J2284/2_200203
This document will define the Physical Layer and portions of the Data Link Layer of the ISO model for a 250 Kbps High Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 250 Kbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 6 of this document. This document is designed such that if the Electronic Control Unit requirements defined in Section 6 are met, then the system level attributes should be obtainable. This document will address only requirements which may be tested at the ECU and media level.
Standard

High Speed CAN (HSC) for Vehicle Applications at 250 kbps

2016-11-22
HISTORICAL
J2284/2_201611
This SAE Recommended Practice will define the Physical Layer and portions of the Data Link Layer of the Open Systems Interconnection model (ISO 7498) for a 250 kbps High Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 250 kbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 5 of this document. This document is designed such that if the Electronic Control Unit (ECU) requirements defined in Section 6 are met, then the system level attributes should be obtainable.
Standard

Clock Extension Peripheral Interface (CXPI)

2015-10-27
HISTORICAL
J3076_201510
This document is an information report and intended to provide an overview of the Clock Extension Peripheral Interface (CXPI) protocol.
Standard

High-Speed CAN (HSC) for Vehicle Applications at 250 kbps

2023-05-10
CURRENT
J2284/2_202305
This SAE Recommended Practice will define the Physical Layer and portions of the Data Link Layer of the Open Systems Interconnection model (ISO 7498) for a 250 kbps High Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 250 kbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 5 of this document. This document is designed such that if the Electronic Control Unit (ECU) requirements defined in Section 6 are met, then the system level attributes should be obtainable.
Standard

High-Speed CAN (HSC) for Vehicle Applications at 500 kbps with CAN FD Data at 5 Mbps

2022-11-02
CURRENT
J2284/5_202211
This SAE Recommended Practice will define the physical layer and portions of the data link layer of the open systems interconnection model (ISO 7498) for a 500 kbps arbitration bus with CAN FD data at 5 Mbps high-speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High-Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 500 kbps arbitration bus with CAN FD Data at 5 Mbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 6 of this document.
Standard

High-Speed CAN (HSC) for Vehicle Applications at 500 kbps with CAN FD Data at 5 Mbps

2016-09-09
HISTORICAL
J2284/5_201609
This SAE Recommended Practice will define the Physical Layer and portions of the Data Link Layer of the Open Systems Interconnection model (ISO 7498) for a 500 kbps arbitration bus with CAN FD Data at 5 Mbps High-Speed CAN (HSC) protocol implementation. Both ECU and media design requirements for networks will be specified. Requirements will primarily address the CAN physical layer implementation. Requirements will focus on a minimum standard level of performance from the High-Speed CAN (HSC) implementation. All ECUs and media shall be designed to meet certain component level requirements in order to ensure the HSC implementation system level performance at 500 kbps arbitration bus with CAN FD Data at 5 Mbps. The minimum performance level shall be specified by system level performance requirements or characteristics described in detail in Section 6 of this document.
X