Refine Your Search

Topic

Author

Search Results

Standard

Nickel Cadmium Vented Rechargeable Aircraft Batteries (Non-Sealed, Maintainable Type)

1981-02-15
CURRENT
AS8033
The Nickel Cadmium battery covered by this Aerospace Standard is the type which is generally, although not exclusively, used for engine starting purposes in turbine-powered aircraft and/or on aircraft with turbine type Auxiliary Power Units. This turbine starting function requires high power delivery rates from the battery for 15 to 30 seconds or more for each engine start. This same battery may also be used at lower power delivery rates, as the final redundant source of emergency electrical energy for the operation of essential flight equipment for required periods of 30 to 60 minutes. The battery generally consists of a group of plastic jarred cells contained within an enclosing battery case. They are electrically connected in series with each other and usually terminate in an electrical connector mounted in the case front wall. The battery case may be secured to the aircraft structure by any of a number of clamping techniques.
Standard

Identification Marking of Copper and Copper Base Alloy Mill Products

2014-03-17
CURRENT
AMSSTD185A
This standard establishes the physical item marking requirements for identification purposes for copper and copper-base alloy mill products procured and issued for government activities. Shipment and inspection acceptance markings are not within the scope of this standard.
Standard

Identification Marking of Copper and Copper Base Alloy Mill Products

2000-09-01
HISTORICAL
AMSSTD185
This standard establishes the physical item marking requirements for identification purposes for copper and copper-base alloy mill products procured and issued for government activities. Shipment and inspection acceptance markings are not within the scope of this standard.
Standard

OPERATOR ENCLOSURE PRESSURIZATION SYSTEM TEST PROCEDURE

1993-06-01
CURRENT
J1012_199306
This SAE Recommended Practice establishes a uniform test procedure for evaluating performance of operator enclosure pressurization systems for construction, general-purpose industrial, agricultural, forestry, and specialized mining machinery as categorized in SAE J1116 for off-road, self-propelled work machines.
Standard

Gas Turbine Engine Interface Test Data Reduction Computer Programs

2002-12-12
HISTORICAL
ARP1210D
This SAE Aerospace Recommended Practice (ARP) describes a class of digital computer programs for use by organizations other than the engine supplier for reduction of engine test data relating to the interface of the engine in the airframe or test facility. This ARP also is intended as a guide for the preparation of such computer programs.
Standard

GAS TURBINE ENGINE INTERFACE TEST DATA REDUCTION COMPUTER PROGRAMS

1996-11-01
HISTORICAL
ARP1210C
This SAE Aerospace Recommended Practice (ARP) describes a class of digital computer programs for use by organizations other than the engine supplier for reduction of engine test data relating to the interface of the engine in the airframe or test facility. This ARP also is intended as a guide for the preparation of such computer programs.
Standard

Defining and Measuring Factors Affecting Helicopter Turbine Engine Power Available

2020-02-12
WIP
ARP1702B
The purpose of this Aerospace Recommended Practice (ARP) is to define a method of measuring those factors affecting installed power available for helicopter power plants. These factors are installation losses, accessory power extraction, and operational effects. Accurate determination of these factors is vital in the calculation of helicopter performance as described in the flight manual. It is intended that the methods herein prescribe and define each factor as well as an approach to measuring said factor. Only standard installations of turboshaft engines in helicopters are considered. Special arrangements leading to high installation losses, such as the fitting of an infrared suppressor may require individual techniques for the determiantion and definition of engine installation losses.
Standard

Defining and Measuring Factors Affecting Helicopter Turbine Engine Power Available

1998-09-01
CURRENT
ARP1702A
This SAE Aerospace Recommended Practice (ARP) identifies and defines a method of measuring those factors affecting installed power available for helicopter power plants. These factors are installation losses, accessory power extraction, and operation effects. Accurate determination of these factors is vital in the calculation of helicopter performance as described in the flight manual. It is intended that the methods herein prescribe and define each factor as well as an approach to measuring said factor. Only standard installations of turboshaft engines in helicopters are considered. Special arrangements leading to high installation losses, such as the fitting of an infrared suppressor may require individual techniques for the determination and definition of engine installation losses.
Standard

Fire Testing of Fluid Handling Components for Aircraft Engines and Aircraft Engine Installations

2007-02-15
CURRENT
AS4273A
This document establishes requirements, test procedures, and acceptance criteria for the fire testing of fluid handling components and materials used in aircraft fluid systems. It is applicable to fluid handling components other than those prescribed by AS1055 (e.g., hoses, tube assemblies, coils, and fittings). It also is applicable to materials, wiring, and components such as reservoirs, valves, gearboxes, pumps, filter assemblies, accumulators, fluid-cooled electrical/electronic components, in-flight fluid system instrumentation, hydromechanical controls, actuators, heat exchangers, and manifolds. These components may be used in fuel, lubrication, hydraulic, or pneumatic systems.
Standard

FIRE TESTING OF FLUID HANDLING COMPONENTS FOR AIRCRAFT ENGINES AND AIRCRAFT ENGINE INSTALLATIONS

1996-08-01
HISTORICAL
AS4273
This document establishes requirements, test procedures, and acceptance criteria for the fire testing of fluid handling components and materials used in aircraft fluid systems. It is applicable to fluid handling components other than those prescribed by AS1055 (e.g., hoses, tube assemblies, coils, fittings). It also is applicable to materials, wiring, and components such as reservoirs, valves, gearboxes, pumps, filter assemblies, accumulators, fluid-cooled electrical/electronic components, in-flight fluid system instrumentation, hydromechanical controls, actuators, heat exchangers, and manifolds. These components may be used in fuel, lubrication, hydraulic, or pneumatic systems.
X