Refine Your Search


Search Results


Flexible Real-Time Simulation of Truck and Trailer Configurations

Real-time simulation of truck and trailer combinations can be applied to hardware-in-the-loop (HIL) systems for developing and testing electronic control units (ECUs). The large number of configuration variations in vehicle and axle types requires the simulation model to be adjustable in a wide range. This paper presents a modular multibody approach for the vehicle dynamics simulation of single track configurations and truck-and-trailer combinations. The equations of motion are expressed by a new formula which is a combination of Jourdain's principle and the articulated body algorithm. With the proposed algorithm, a robust model is achieved that is numerically stable even at handling limits. Moreover, the presented approach is suitable for modular modeling and has been successfully implemented as a basis for various system definitions. As a result, only one simulation model is needed for a large variety of track and trailer types.

Improvement in OBD Development Process for HEV's

Hybrid technology has the potential to enable dramatic reductions in greenhouse gases (GHG), such as the California goal of reducing GHG by 80 percent from 1990 levels by 2050. As a result it is expected that hybrid systems will occupy a growing proportion of the market. However, introducing a hybrid system in a vehicle may adversely affect the performance of the engine OBD system in monitoring malfunctions impacting pollutant emissions. For example, a hybrid system that reduces time of the engine in idle or deceleration overrun conditions could make a well-performing engine OBD system noncompliant, by reducing in-use frequency of some OBD monitors below acceptable levels. In this presentation, Ricardo will present a process for evaluating the impact that a hybrid system which has been optimised to minimise GHG emission over a specified drive-cycle will have on the effectiveness of engine OBD monitors.

Exhaust Particle Sensor for OBD Application

This session focuses on particle emissions from combustion engines, including measurement methods and fuel effects. Presenter Leonidas D. Ntziachristos, Aristotle University Thessaloniki

Advances of Virtual Testing and Hybrid Simulation in Automotive Performance and Durability Evaluation

Virtual testing is a method that simulates lab testing using multi-body dynamic analysis software. The main advantages of this approach include that the design can be evaluated before a prototype is available and virtual testing results can be easily validated by subsequent physical testing. The disadvantage is that accurate specimen models are sometimes hard to obtain since nonlinear components such as tires, bushings, dampers, and engine mounts are hard to model. Therefore, virtual testing accuracy varies significantly. The typical virtual rigs include tire and spindle coupled test rigs for full vehicle tests and multi axis shaker tables for component tests. Hybrid simulation combines physical and virtual components, inputs and constraints to create a composite simulation system. Hybrid simulation enables the hard to model components to be tested in the lab.

What If We Let Consumers Design PHEVs?

Consumers design different PHEVs than expert analysts assume. Experts almost uniformly assume PHEVs that offer true all-electric driving for 10 to 60 miles; consumers are more likely to design PHEVs that do not offer true all-electric driving and have short ranges over which they use grid-electricity. Thus consumers? PHEV designs are less expensive. These consumer PHEV designs do, or don?t, produce lower GHG emissions than experts? PHEVs over the next ten years. The devil is in the details, i.e., which powerplant emissions to assign to new electricity demand: marginal or average. If (based on marginal powerplant emissions) it makes almost no difference whether we sell consumer-designed or expert-assumed PHEVs over the next ten years, yet as the grid continues to de-carbonize all-electric PHEV designs emerge as clearly the better option, there is a trajectory we could be on from blended, ?short range? PHEVs to all-electric ?long range? PHEVs.

Review of Updated Aerospace Recommended Practices ARP5061A, "Guidelines for Testing and Support of Aerospace, Fiber Optic, Inter-Connect Systems"

PRESENTATION ABSTRACT (ROI Approval BOE021811-122) REVIEW OF UPDATED AEROSPACE RECOMMENDED PRACTICES ARP5061A, Guidelines for Testing and Support of Aerospace, Fiber Optic, Inter-Connect Systems RATIONALE: A single source document to capture current best practices, methods, test equipment, and materials that support fiber optic interconnect systems including high-density applications deployed in Aerospace platforms. SCOPE: This presentation will describe how the ARP5061 document provides the maintainer unique guidelines for optical performance testing of short haul fiber optic inter-connect systems used in aerospace vehicles. The focus of this document is to establish common pre and post installation test methods, equipment, materials, and troubleshooting methodologies. QUALIFICATIONS AND TRAINING STANDARDS: The repair and maintenance of a fiber optic system should ONLY BE PERFORMED by qualified personnel.

Formula SAE Sponsorship Video

Formula SAE challenges students to conceive, design, fabricate, and compete with small formula-style racing car. 120 university teams from around the globe spend 8-12 months designing, building and preparing their vehicles for the competition. Learn why sponsors support Formula SAE and become a sponsor today!

Spotlight on Design Insight: The Impact of Additive Manufacturing in Automotive Applications

In “The Impact of Additive Manufacturing in Automotive Applications”, a professor from Kettering University explains why additive manufacturing will be a game changer for car makers, and how process control is one of the biggest challenges ahead. An engineer at Local Motors in Arizona shows how the company builds its cars using a large-scale 3D printer, including how a variety of materials is being evaluated for optimal performance in this type of application. The episode highlights: The expected positive impact of AM on smaller car makers and suppliers The key difference between small 3D printers and large-scale ones The need to find the best possible material combination so vehicles that are #D-printed are as safe as traditional ones Also Available in DVD Format To subscribe to a full-season of Spotlight on Design, please contact SAE Corporate Sales: or 1-888-875-3976.

SAE programs, products, and services for mobility engineers

SAE International is the nexus that connects the engineering community for the purpose of life-long learning and the advancement of the mobility industry. It offers programs, products, and services that afford the engineering community limitless opportunities to LEARN, DEVELOP, and CONNECT so together, we can advance industry. Find out more about our events, professional development, and publication products.

Start your lifelong journey with SAE International

Through a variety of ways, SAE brings together a multi-industry global engineering community for personal or professional advancement. We strive to foster a lifetime of learning and the advancement of the mobility industry. Find out how you can start your lifelong journey with us through membership, volunteerism, STEM advancement, events, publications, and more.

SAE AutoDrive Challenge: Year 1

Learn more about this newly established three-year autonomous vehicle competition, tasking students to develop and demonstrate a fully autonomous driving passenger vehicle.

Go where the talent is: Sponsor SAE's CDS

SAE's Collegiate Design Series (CDS) provides unmatched hands-on experience that arms engineering students for their future and is the foundation to furthering the industry. Sponsoring SAE's CDS competitions can position your company directly in front of the most skilled and creative students, helping you find the best engineers for your organization and build your brand.

Your Bridge to Success in the Real World

Students share how SAE Membership has opened doors for their careers, provided educational opportunities and hands-on experiences that has helped them to become a better engineer.

SAE Demo Day in Tampa - Public Perception

The public sees endless reports about self-driving cars. Some are breathless, others scary. Yet outside of small tech and policy circles, few people have actually experienced this coming technology. SAE gave people the opportunity May 2018 in Tampa. Hear what they had to say after the experience.

SAE Demo Day in Tampa - City and State Perspectives

Dramatic changes in transportation are coming. Cities and states looking to be at the forefront and reap the benefits, need an engaged and informed citizenry. Hear how the SAE Demo Day in Tampa supported Florida's AV initiatives and can benefit states nationwide.

Composite Predictive Engineering Studies - American Chemistry Council Plastics Division

Since 2006 Oak Ridge National Labs (ORNL) and the Pacific Northwest National Labs (PNNL) have conducted research of injection molded long glass fiber thermoplastic parts funded by U.S. DOE. At DOE's request, ACC's Plastics Division Automotive Team and USCAR formed a steering committee for the National Labs, whose purpose was to provide industry perspective, parts materials and guidance in processing. This ACC affiliation enabled the plastics industry to identify additional key research requirements necessary to the success of long glass fiber injection molded materials and their use in the real world. Through further cooperative agreements with Autodesk Moldflow and University of Illinois, a new process model to predict both fiber orientation distribution and fiber length distribution is now available. Mechanical property predictive tools were developed and Moldflow is integrating these models into their software.

NHTSA Lightweighting and Safety Studies

Historically, studies by the National Highway Traffic Safety Administration (NHTSA) in support of CAF� rulemaking indicate that lightweighting vehicles lead to degraded safety. However, recent studies provided to NHTSA show that good designs for lightweighting can provide equivalent safety. This presentation highlights two studies funded by NHTSA in part to address these latest findings. The first is a George Washington University study, �Investigate Opportunities for Lightweighting Vehicles Using Advanced Plastics and Composites.� The second is an Electricore study, �Mass Reduction for Light-Duty Vehicles for Model Years 2017-2015. The findings presented include that it is possible to lightweight vehicles and provide equivalent safety and that costs drive designers toward the use of advanced metals.

Natural Gas for School Buses: A Case for Using the Only Domestically Produced Alternative Fuel

A review of the processes that lead to the conclusion that CNG was the best solution for the fleet, including the efforts to gain public support for alternative fuels for school buses. MISD is now home for 42 CNG powered school buses (of 200). The presentation will include training and design tips for safety and smooth operations along with maintenance considerations for using CNG. Alternative fuels, the dilemma of which comes first - refueling station or operational buses ? has an impact on grant approval and funding, bearing discussion of the option of a public/private model. Unlike other alternative fuels, CNG has a national security impact Presenter Charles Stone, Mansfield Indep School Dist

ARAMiS - Taming Multicores for Safe Transportation

Multicore processor are well established in classical and tablet personal computers for some year. Such processors use more then one central core for computation and allow to integrate more computational power with smaller costs. However more than 90% of all processors worldwide are not placed in classical IT but are empedded in bigger systems like in modern vehicles or airplanes. Such systems face a very high demand in terms of safety, security an reliability which hinders the use of multicores in such systems. The funded project ARAMiS faces these demands and has the goal to enable the usability of multicore systems in the domains automotive and avionics, as well as later also railway. ARAMiS is the basis for higher traffic safety, traffic efficiency and comfort.