Refine Your Search

Topic

Author

Search Results

Journal Article

Effects of Controlled Modulation on Surface Textures in Deep-Hole Drilling

2012-09-10
2012-01-1868
Deep-hole drilling is among the most critical precision machining processes for production of high-performance discrete components. The effects of drilling with superimposed, controlled low-frequency modulation - Modulation-Assisted Machining (MAM) - on the surface textures created in deep-hole drilling (ie, gun-drilling) are discussed. In MAM, the oscillation of the drill tool creates unique surface textures by altering the burnishing action typical in conventional drilling. The effects of modulation frequency and amplitude are investigated using a modulation device for single-flute gun-drilling on a computer-controlled lathe. The experimental results for the gun-drilling of titanium alloy with modulation are compared and contrasted with conventional gun-drilling. The chip morphology and surface textures are characterized over a range of modulation conditions, and a model for predicting the surface texture is presented. Implications for production gun-drilling are discussed.
Technical Paper

Inductive or Magnetic Recharging for Small UAVs

2012-10-22
2012-01-2115
We developed a wireless, contact free power transfer mechanism that is safer and robust to imperfect alignment on landing at the base station and that avoid trips back to the launch sites for recharging off power lines. A magnetic field is created using inductor coils on both the transmitting and receiving sides. We use small induction coils around the UAV to increase efficiency and decrease interference. By locating several of these small inductive coils around our quad-rotor UAV, faster recharging is accomplished in comparison to the use of just one coil. In addition, more coils permit larger voltages for more efficient power transfers. On the base station, several folding robotic arms will be used to realign the receiver coils over the transmitter coils. After adequate recharging as measured by battery voltages or power consumption at the base station, the UAV sends a signal to the base station to open the dome to fly away.
Technical Paper

Excitation Strategies for a Wound Rotor Synchronous Machine Drive

2014-09-16
2014-01-2138
In this research, excitation strategies for a salient-pole wound rotor synchronous machine are explored using a magnetic equivalent circuit model that includes core loss. It is shown that the excitation obtained is considerably different than would be obtained using traditional qd-based models. However, through evaluation of the resulting ‘optimal’ excitation, a relatively straightforward field-oriented type control is developed that is consistent with a desire for efficiency yet control simplicity. Validation is achieved through hardware experiment. The usefulness/applicability of the simplified control to variable speed applications is then considered.
Technical Paper

Balloon Launched UAV with Nested Wing for Near Space Applications

2007-09-17
2007-01-3910
There has always been, from the very first UAV, a need for providing cost-effective methods of deploying unmanned aircraft systems at high altitudes. Missions for UAVs at high altitudes are used to conduct atmospheric research, perform global mapping missions, collect remote sensing data, and establish long range communications networks. The team of Gevers Aircraft, Technology Management Group, and Purdue University have designed an innovative balloon launched UAV for these near space applications. A UAV (Payload Return Vehicle) with a nested morphing wing was designed in order to meet the challenges of high altitude flight, and long range and endurance without the need for descent rate control with rockets or a feathering mode.
Technical Paper

Simultaneous Biodegradation of a Two-Phase Fluid: Discolored Biofilm Issues

2006-07-17
2006-01-2256
Three replicate aerobic-heterotrophic biotrickling filters were designed to promote the simultaneous biodegradation of graywater and a waste gas containing NH3, H2S and CO2. Upon visual observation of discolored solids, it was originally hypothesized that gas-phase CO2 concentrations were excessive, causing regions of anoxic zones to form within the biotrickling filters. Observed discolored (black) biofilm of this nature is typically assumed to be either lysed bacterial cells or anaerobic regions, implying alteration of operational conditions. Solid (biofilm) samples were collected in the presence and absence of gas-phase wastestream(s) to determine if the gas-phase contaminants were contributing to the solid-phase discoloration. Two sets of experiments (shaker flask and solids characterization) were conduced to determine the nature of the discolored solids. Results indicated that the discolored solids were neither anaerobic bacteria nor lysed cells.
Technical Paper

NASA's On-line Project Information System (OPIS) Attributes and Implementation

2006-07-17
2006-01-2190
The On-line Project Information System (OPIS) is a LAMP-based (Linux, Apache, MySQL, PHP) system being developed at NASA Ames Research Center to improve Agency information transfer and data availability, largely for improvement of system analysis and engineering. The tool will enable users to investigate NASA technology development efforts, connect with experts, and access technology development data. OPIS is currently being developed for NASA's Exploration Life Support (ELS) Project. Within OPIS, NASA ELS Managers assign projects to Principal Investigators (PI), track responsible individuals and institutions, and designate reporting assignments. Each PI populates a “Project Page” with a project overview, team member information, files, citations, and images. PI's may also delegate on-line report viewing and editing privileges to specific team members. Users can browse or search for project and member information.
Technical Paper

Simulation of Air Quality in ALS System with Biofiltration

2005-07-11
2005-01-3111
Most of the gaseous contaminants generated inside ALS (Advanced Life Support) cabins can be degraded to some degree by microbial degradation in a biofilter. The entry of biofiltration techniques into ALS will most likely involve integration with existing physico-chemical methods. However, in this study, cabin air quality treated by only biofiltration was predicted using the one-box and biofiltration models. Based on BVAD (Baseline Values and Assumptions Document) and SMAC (Spacecraft Maximum Allowable Concentrations), ammonia and carbon monoxide will be the critical compounds for biofilter design and control. Experimentation is needed to identify the pertinent microbial parameters and removal efficiency of carbon monoxide and to validate the results of this preliminary investigation.
Technical Paper

NASA Specialized Center of Research and Training in Advance Life Support (ALS/NSCORT) Education and Outreach Program

2005-07-11
2005-01-3107
The ALS/NSCORT Education and Outreach provides an avenue to engage and educate higher education students and K-12 educators/students in the center's investigations of the synergistic concepts and principles required for regenerative life-support in extended-duration space exploration. The following K-12 Education programs will be addressed: 1) Key Learning Community Project provides exposure, mentoring and research opportunities for 9-12th grade students at Key Learning Community This program was expanded in 2004 to include an “Explore Mars” 3-day camp experience for 150 Key students. The overall goal of the collaborative project is to motivate students to pursue careers in science, technology, and engineering; 2) Mission to Mars Program introduces 5th-8th grade students to the complex issues involved with living on Mars, stressing the interdisciplinary fundamentals of science, technology and engineering that underlie Advanced Life Support research.
Technical Paper

Evaluation of Biological Trickling Filter Performance for Graywater Treatment in ALS Systems

2005-07-11
2005-01-3023
The Bioregenerative Air Treatment for Health system has been proposed for Advanced Life Support (ALS) planetary base applications. The system will be operated as a biotrickling filter to simultaneously treat graywater and waste gas. Preliminary experiments have focused on carbon removal from a graywater simulant. Six bench scale biotrickling filter reactors were constructed and monitored continuously. After a reactor startup phase of 40 days, the average total organic carbon (TOC) removal for reactors packed with Tri-packs® packing material was 62%. A second set of experiments was designed to evaluate TOC removal using different packing materials (Bee-cell and Biobale). It was hypothesized that the alternative packing materials would reduce the effects of channeling in the reactors, thus improving TOC removal. However, TOC removal did not significantly improve during the second set of experiments.
Technical Paper

Urine Processing for Water Recovery via Freeze Concentration

2005-07-11
2005-01-3032
Resource recovery, including that of urine water extraction, is one of the most crucial aspects of long-term life support in interplanetary space travel. This paper will consequently examine an innovative approach to processing raw, undiluted urine based on low-temperature freezing. This strategy is uniquely different from NASA's current emphasis on either ‘integrated’ (co-treatment of mixed urine, grey, and condensate waters) or ‘high-temperature’ (i.e., VCD [vapor compression distillation] or VPCAR [vapor phase catalytic ammonia removal]) processing strategies, whereby this liquid freeze-thaw (LiFT) procedure would avoid both chemical and microbial cross-contamination concerns while at the same time securing highly desirable reductions in likely ESM levels.
Technical Paper

A New Lab for Testing Biofiltration for Advanced Life Support

2005-07-11
2005-01-3060
Bioregenerative systems for removal of gaseous contaminants are desired for long-term space missions to reduce the equivalent system mass of the air cleaning system. This paper describes an innovative design of a new biofiltration test lab for investigating the capability of biofiltration process for removal of ersatz multi-component gaseous streams representative of spacecraft contaminants released during long-term space travel. The lab setup allows a total of 24 bioreactors to receive identical inlet waste streams at stable contaminant concentrations via use of permeations ovens, needle valves, precision orifices, etc. A unique set of hardware including a Fourier Transform Infrared (FTIR) spectrometer, and a data acquisition and control system using LabVIEW™ software allows automatic, continuous, and real-time gas monitoring and data collection for the 24 bioreactors. This lab setup allows powerful factorial experimental design.
Technical Paper

Modeling Mission Operations Trade Spaces and Lunar C3I Capabilities

2009-07-12
2009-01-2426
This paper introduces an integration-level analysis tool to provide feedback for high-level trade spaces. The Purdue University Lunar C3I Model integrates approximations of several domain-specific models to simulate for many years the effect of network and asset parameters. This paper discusses the communication, anomaly response, and autonomy simulation models in depth. Results of these models provide specific examples of integration-level figures of merit that can be useful for comparing different campaign implementations. These figures of merit are contrasted with related domain-specific figures of merit in order to demonstrate the need for higher-level system integration decisions. A final example of integration-level results and interpretation discusses the autonomy level of the Altair lunar lander.
Technical Paper

Developing Education and Outreach Initiatives at the Indiana Space Grant Consortium

2009-07-12
2009-01-2546
The Indiana Space Grant Consortium is one of 52 members of the National Space Grant College and Fellowship Program (“Space Grant”), which was initiated by NASA in 1988. Space Grant is designed to be a source of NASA-related information, awards, and programs to enhance education, outreach, and workforce development for the United States. Based on the land grant model of public university education, Space Grant seeks to spread the vision of NASA to increase science, technology, engineering, and math (STEM) awareness; NASA-related education; workforce development; outreach and research activities. This paper describes the evolution of these activities in Indiana.
Technical Paper

Water and Energy Transport for Crops under Different Lighting Conditions

2006-07-17
2006-01-2028
When high-intensity discharge (HID) electric lamps are used for plant growth, system inefficiencies occur due to an inability to effectively target light to all photosynthetic tissues of a growing crop stand, especially when it is closed with respect to light penetration. To maintain acceptable crop productivity, light levels typically are increased thus increasing heat loads on the plants. Evapotranspiration (ET) or transparent thermal barrier systems are subsequently required to maintain thermal balance, and power-intensive condensers are used to recover the evaporated water for reuse in closed systems. By accurately targeting light to plant tissues, electric lamps can be operated at lower power settings and produce less heat. With lower power and heat loads, less energy is used for plant growth, and possibly less water is evapotranspired. By combining these effects, a considerable energy savings is possible.
Technical Paper

Strawberry Cultivar Analysis: Temperature and Pollination Studies

2006-07-17
2006-01-2030
Strawberry is a life-support-system candidate crop species that is long-lived, asexually propagated, and can bear large quantities of fruit high in sugar and antioxidant content. Strawberries of four day-neutral cultivars (‘Tribute’, ‘Tristar’, ‘Seascape’, and ‘Fern’) and one ever-bearing cultivar (‘Cavendish’) were grown under greenhouse conditions or varying temperature regimes in three growth chambers. Flowers in growth chambers were hand pollinated three-times weekly with stored pollen, and ripe berries were harvested, counted, weighed, and tested organolepticly. In the greenhouse, two different pollination treatments were compared, while another group of plants was left unpollinated, receiving only occasional mechanical stimulation from normal greenhouse airflow, berry harvest, and plant maintenance. A second group was pollinated with a vibrating wand, and a third group was hand pollinated with stored pollen.
Technical Paper

Loading Balance and Influent pH in a Solids Thermophilic Aerobic Reactor

2005-07-11
2005-01-2982
The application of biological treatment to solid waste is very promising to facilitate recycling of water, carbon, and nutrients and to reduce the resupply needs of long-term crewed space missions. Degradation of biodegradable solid wastes generated during such a mission is under investigation as part of the NASA Center of Research and Training (NSCORT) at Purdue University. Processing in the solids thermophilic aerobic reactor (STAR) involves the use of high temperature micro-aerobic slurry conditions to degrade solid wastes, enabling the recycling of water, carbon, and nutrients for further downstream uses. Related research presently underway includes technical development and optimization of STAR operations as well as a complementary evaluation of post-STAR processing for gas-stream purification, water recovery by condensate purification, and residuals utilization for both mushroom growth media and nutritional support for fish growth.
Technical Paper

System Level Design and Initial Equivalent System Mass Analysis of a Solid-Phase Thermophilic Aerobic Rector for Advanced Life Support Systems

2005-07-11
2005-01-2983
This paper presents a system-level design and initial equivalent systems mass (ESM) analysis for a solid-phase thermophilic aerobic reactor (STAR) system prototype that is designed for a Mars surface mission. STAR is a biological solid waste treatment system that reduces solid waste, neutralizes pathogens, and produces a stabilized product amenable to nutrient reuse and water recovery in a closed life support system. The STAR system is designed for long-duration space missions or long-term remote planetary operations. A system-level design analysis for sizing a STAR process and the subsequent ESM based sensitivity analysis based on a 600-day Mars surface mission with a 6-person crew will be presented. Preliminary ESM sensitivity analysis identified that improving system energy conservation efficiency should be the focus of future research once the fundamental STAR process development has matured.
Journal Article

Designing for Large-Displacement Stability in Aircraft Power Systems

2008-11-11
2008-01-2867
Due to the instabilities that may occur in power systems with regulated loads such as those used in military aircraft, ships, and terrestrial vehicles, many analysis techniques and design methodologies have been developed to ensure stable operation for expected operating conditions. However, many of these techniques are difficult to apply to complex systems and do not guarantee large-displacement stability following major disturbances such as faults, regenerative operation, large pulsed loads, and/or the loss of generating capacity. In this paper, a design paradigm is set forth guaranteeing large-displacement stability of a power system containing a significant penetration of regulated (constant-power) loads for any value of load power up to and including the steady-state rating of the source. Initial investigations are performed using an idealized model of a dc-source to determine the minimum requirements that ensure large-displacement stability.
Technical Paper

Characterizing Crop-Waste Loads for Solid-Waste Processing

2007-07-09
2007-01-3187
In long-duration, closed human habitats in space that include crop growth, one challenge that is faced while designing a candidate waste processor is the composition of solid-waste loads, which include human waste, packaging and food-processing materials, crop spoilage, and plant residues. In this work, a new modeling tool is developed to characterize crop residues and food wastes based on diet in order to support the design of solid-waste technologies for closed systems. The model predicts amounts of crop residues and food wastes due to food processing, crop harvests, and edible spoilage. To support the design of solid-waste technologies, the generation of crop residues and food wastes was characterized for a 600-day mission to Mars using integrated menu, crop, and waste models. The three sources of plant residues and food waste are identified to be food processors, crop harvests, and edible spoilage.
Technical Paper

Thermal Interface Materials Based on Anchored Carbon Nanotubes

2007-07-09
2007-01-3127
The new devices and missions to achieve the aims of NASA's Science Mission Directorate (SMD) are creating increasingly demanding thermal environments and applications. In particular, the low conductance of metal-to-metal interfaces used in the thermal switches lengthen the cool-down phase and resource usage for spacecraft instruments. During this work, we developed and tested a vacuum-compatible, durable, heat-conduction interface that employs carbon nanotube (CNT) arrays directly anchored on the mating metal surfaces via microwave plasma-enhanced, chemical vapor deposition (PECVD). We demonstrated that CNT-based thermal interface materials have the potential to exceed the performance of currently available options for thermal switches and other applications.
X