Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Comparison of Black Carbon Measurements to Solid Particle Number Measurements Made over Steady State and Transient Cycles

2015-04-14
2015-01-1074
Diesel engines have been identified as contributing to more than half of the transport sectors black carbon (BC) emissions in the US. This large contribution to atmospheric BC concentrations has raised concern about source specific emission rates, including off-highway engines. The European Union has recently implemented more stringent particulate regulations in the form of particle number via the Particle Measurement Programme (PMP) methodology. The PMP method counts the non-volatile fraction of particulate matter (PM) above 23 nm and below 2.5 μm via a condensation particle counter. This study evaluates a surrogate black carbon method which uses the PMP particle count method with a correlation factor to the BC fraction. The transient capable Magee Scientific Aethalometer (AE-33) 880 nm wavelength channel was used to determine the BC fraction.
Technical Paper

The Effect of Diesel Exhaust Fluid Dosing on Tailpipe Particle Number Emissions

2016-04-05
2016-01-0995
Introduction of modern diesel aftertreatment, primarily selective catalytic reduction (SCR) designed to reduced NOx, has increased the presence of urea decomposition byproducts, mainly ammonia, in the aftertreatment system. This increase in ammonia has been shown to lead to particle formation in the aftertreatment system. In this study, a state of the art diesel exhaust fluid (DEF)-SCR system was investigated in order to determine the influence of DEF dosing on solid particle count. Post diesel particulate filter (DPF) particle count (> 23 nm) is shown to increase by over 400% during the World Harmonized Transient Cycle (WHTC) due to DEF dosing. This increase in tailpipe particle count warranted a detailed parametric study of DEF dosing parameters effect on tailpipe particle count. Global ammonia to NOx ratio, DEF droplet residence time, and SCR catalyst inlet temperature were found to be significant factors in post-DPF DEF based particle formation.
X