Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Performance and Regeneration Characteristics of a Cellular Ceramic Diesel Particulate Trap

Fundamental aspects of performance and regeneration of a porous ceramic particulate trap are described. Dimensionless correlations are given for pressure drop vs. flow conditions for clean and loaded traps. An empirical relationship between estimated particulate deposits and a loading parameter that distinguishes pressure drop changes due to flow variations from particulate accumulation is presented. Results indicate that trapping efficiencies exceed 90% under most conditions and pressure drop doubles when particulate accumulation occupies only 5% of the available void volume. Regeneration was achieved primarily by throttling the engine intake air. For various combinations of initial loading level, trap inlet temperature and oxygen concentration, it was found that regeneration rate peaked after 45 seconds from initiation.
Technical Paper

Tribological Investigations for an Insulated Diesel Engine

A Minimum Cooled Engine (MCE) has been successfully run for 250 hours at rated condition of 298 kW and 1900 rpm. This engine was all metallic without any coolant in the block and lower part of the heads. Ring/liner/lubricant system and thermal loading on the liner at top ring reversal (TRR) as well as on the piston are presented and discussed. Ring/liner wear is given as well as oil consumption and blow-by data during the endurance run. Another engine build with a different top ring coating and several lubricants suggested that a 1500 hours endurance run of MCE is achievable. Rig test data for screening ring materials and synthetic lubricants necessary for a successful operation of a so-called Adiabatic Engine with the ring/ceramic liner (SiN) interface temperature up to 650°C are presented and discussed.
Technical Paper

Combustion Chamber Insulation Effect on the Performance of a Low Heat Rejection Cummins V-903 Engine

Cummins Engine Company is developing a low heat rejection 450 kW engine under contract for the US Army Tank & Automotive Command. This paper discusses progress made toward achieving the program goals of 6.6 kcal/kW-min brake specific heat rejection and 200 g/kW-hr brake specific fuel consumption. Methodology for measuring heat rejection on a low heat rejection engine is presented. Design improvements of the base engine are discussed along with their effect on improving fuel consumption. Performance test data is assessed in terms of the first law energy balance and cooling load distribution. The heat rejection data provides insights on the performance of insulating components and two cooling system designs. Diesel cycle simulations are compared to the test data and are used to predict the effect of ceramic insulation on engine heat rejection.