Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

A New Computational Tool for Automotive Cabin Air Temperature Simulation

2013-04-08
2013-01-0868
The thermal comfort inside automotive cabin has been extensively studied for decades. Traditional CFD models provide accurate simulation results of the air temperature distributions inside cabins but at a relatively high computation cost. In order to reduce the computational cost while still providing reasonable accuracy in simulating the air temperature profile inside a mid-sized sedan cabin, this paper introduces a new simulation tool that utilizes a proper orthogonal decomposition (POD) method. The POD method, an interpolation technique, requires only one set of multiple CFD simulations to produce a set of “snapshots”. Later, any simulations that require CFD runs to solve algorithm equation sets can be simplified by using interpolation between the snapshots provided that the geometry of the cabin keeps the same. As a result, the computation time can be reduced to only a few minutes.
Technical Paper

An Experimental Investigation of Passenger Car Tire Properties at High Slip and Camber Angles

1991-02-01
910233
A newly designed and built Mobile Tire Testing Machine (MTTM) is described that has features for large and continuously variable camber and steering angles with minimum tire scrub. This equipment was used to examine tire properties for six passenger car tires. Of special interest were the tire characteristics at combinations of high slip and camber angle. It was found that camber stiffness decreases with increasing slip angle when the slip and camber angles are both positive, and at limit conditions in slip angle, cambering a tire has little effect on the lateral side force produced. When the slip angle is negative, and the camber angle is positive, preliminary data shows that a greater lateral force is produced when compared to operating at limit conditions in slip angle alone.
Technical Paper

The Pride of Maryland - A Solar Powered Car for GM Sunraycer USA

1991-02-01
910623
The Pride of Maryland is a single seat solar powered trans-continental race car designed and built by engineering students at the University of Maryland. The car competed in G.M. Sunrayce USA, placing third, and has gone on to compete in the World Solar Challenge. This paper outlines the three general areas of design and development for the solar vehicle: aerodynamic, electrical, and mechanical. An exercise in high efficiency, the Pride of Maryland has been extremely successful as both a race car and as an educational tool for training student engineers in “real world” problems.
X