Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Choice of Tuning Parameters on 3D IC Engine Simulations Using G-Equation

2018-04-03
2018-01-0183
3D CFD spark-ignition IC engine simulations are extremely complex for the regular user. Truly-predictive CFD simulations for the turbulent flame combustion that solve fully coupled transport/chemistry equations may require large computational capabilities unavailable to regular CFD users. A solution is to use a simpler phenomenological model such as the G-equation that decouples transport/chemistry result. Such simulation can still provide acceptable and faster results at the expense of predictive capabilities. While the G-equation is well understood within the experienced modeling community, the goal of this paper is to document some of them for a novice or less experienced CFD user who may not be aware that phenomenological models of turbulent flame combustion usually require heavy tuning and calibration from the user to mimic experimental observations.
Technical Paper

Fuel Composition Effects in a CI Engine Converted to SI Natural Gas Operation

2018-04-03
2018-01-1137
Low-carbon fuels such as natural gas (NG) have the potential to lower the demand of petroleum-based fuels, reduce engine-out emissions, and increase IC engine thermal efficiency. One of the most rapid and efficient use of NG in the transportation sector would be as a direct replacement of the diesel fuel in compression ignition (CI) engines without any major engine modifications to the combustion chamber such as new pistons and/or engine head. An issue is the large variation in NG composition with the location and age of the gas well across U.S., which would affect engine operation, as well as the technology integration with emissions after treatment systems. This study used a conventional CI engine modified for spark ignition (SI) NG operation to investigate the effects of methane and a C1-C4 alkane blend on main combustion parameters like in-cylinder pressure, apparent heat release rate, IMEP, etc.
Technical Paper

Experimental Investigation of a Natural Gas Lean-Burn Spark Ignition Engine with Bowl-in-Piston Combustion Chamber

2019-04-02
2019-01-0559
On- and off-road heavy-duty diesel engines modified to spark-ignition natural gas operation can reduce U.S. dependence on imported oil and enhance national energy security. Engine conversion can be achieved through the addition of a gas injector in the intake manifold and of a spark plug in place of the diesel injector. This paper investigated combustion characteristics and engine performance at several lean-burn operating conditions that changed spark timing, mixture equivalence ratio, and engine speed, using methane as NG surrogate.
X