Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Comparison of Contributions to Energy Dissipation Produced with Safety Airbags

1995-02-01
950340
Safety restraint technology relies on woven fabrics as the principle material of construction. On impact, gases are generated instantaneously to inflate the bag. As the pressure within the bag increases during deployment and later from passenger contact, the airbag fabric stretches in a biaxial-manner. Passenger contact with the slowly deflating airbag accelerates the gaseous outflow through the fabric, airbag seams, and through specially constructed vents. A fraction of the impact energy can also be adsorbed by mechanical biaxial stretching of the fabric's fibers. However, the fabric's permeability and/ or vent system appear to be of primary importance to energy dissipation. A unique blister-inflation technique was developed and used to evaluate the fabric properties necessary for energy dissipation by these four mechanisms. The performance of fabrics woven from two traditional commercial polymeric fibers offered for airbag construction were considered.
Technical Paper

Head Impact Response Comparisons of Human Surrogates

1979-02-01
791020
The response of the head to impact in the posterior-to-anterior direction was investigated with live anesthetized and post-mortem primates.* The purpose of the project was to relate animal test results to previous head impact tests conducted with cadavers (reported at the 21st Stapp Car Crash Conference (1),** and to study the differences between the living and post-mortem state in terms of mechanical response. The three-dimensional motion of the head, during and after impact, was derived from experimental measurements and expressed as kinematic quantities in various reference frames. Comparison of kinematic quantities between subjects is normally done by referring the results to a standard anatomical reference frame, or to a predefined laboratory reference frame. This paper uses an additional method for describing the kinematics of head motion through the use of Frenet-Serret frame fields.
Technical Paper

Head impact Response—Skull Deformation and Angular Accelerations

1984-10-01
841657
The response of the head to impact was investigated using live anesthetized and postmortem Rhesus monkeys and repressurized cadavers. The stationary test subject was struck by a guided moving impactor of 10 kg for monkeys; 25 or 65 kg for cadavers. The impactor striking surface was fitted with padding to vary the contact force-time characteristics. The experimental technique used a nine-accelerometer system rigidly mounted on the head to measure head motion, transducers placed at specific points below the skull to record epidural pressure, repressurization of both the vascular and cerebral spinal systems of the cadaver model, and high-speed cineradiography (at 400 or 1000 frames per second) of selected test subjects. The results of the tests demonstrate the potential importance of skull deformation and angular acceleration on the injury produced in the live Rhesus and the damage produced in both the post-mortem Rhesus and the cadaver as a result of impact.
Technical Paper

UMTRI Experimental Techniques in Head Injury Research

1985-06-01
851244
This paper discusses techniques developed and used by the Biosciences Group at the University of Michigan Transportation Research Institute (UMTRI) for measuring three-dimensional head motion, skull bone strain, epidural pressure, and internal brain motion of repressurized cadavers and Rhesus monkeys during head impact. In the experimental design, a stationary test subject is struck by a guided moving impactor of 10 kg (monkeys) and 25 or 65 kg (cadavers). The impactor striking surface is fitted with padding to vary the contact force-time characteristics. The experimental technique uses a nine-accelerometer system rigidly affixed to the skull to measure head motion, transducers placed at specific points below the skull to record epidural pressure, repressurization of both the vascular and cerebrospinal systems, and high-speed cineradiography (at 1000 frames per second) of radiopaque targets.
Technical Paper

Using Triaxial Angular Rate Sensor and Accelerometer to Determine Spatial Orientation and Position in Impact Tests

2009-04-20
2009-01-0055
A data processing algorithm is presented for determining the spatial orientation and position of a rigid body in impact tests based on an instrumentation scheme consisting of a triaxial angular rate sensor and a trialaxial linear accelerometer. The algorithm adopts the unit quaternion as the main parameterized representation of the spatial orientation, and calculates its time history by solving an ordinary differential equation with the angular rate sensor reading as the input. Two supplemental representations, the Euler angles and the direction cosine matrix, are also used in this work, which provide an intuitive description of the orientation, and convenience in transforming the linear accelerometer output in the instrumentation frame to the global frame. The algorithm has been implemented as a computer program, and a set of example impact tests are included to demonstrate its application.
X