Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Finite Element Modeling of the Frame for Body on Frame Vehicles, Part 1 - Subsystem Investigation

2004-03-08
2004-01-0688
For a body-on-frame (BOF) vehicle, the frame is the major structural subsystem to absorb the impact energy in a frontal vehicle impact. It is also a major contributor to energy absorption in rear impact events as well. Thus, the accuracy of the finite element frame model has significant influence on the quality of the BOF vehicle impact predictability. This study presents the latest development of the frame modeling methodology on the simulation of BOF vehicle impact performance. The development is divided into subsystem (frame sled test) and full system (full vehicle test). This paper presents the first phase, subsystem testing and modeling, of the frame modeling development. Based on the major deformation modes in frontal impact, the frame is cut into several sections and put on the sled to conduct various tests. The success of the sled test highly depends on whether the sled results can replicate the deformation modes in the full vehicle.
Technical Paper

Finite Element Modeling of the Frame for Body-On-Frame Vehicles: Part II - Full Vehicle Crash

2004-03-08
2004-01-0689
This study focuses on the modeling of a frame in a body-on-frame (BOF) vehicle to improve the prediction of vehicle response in crashes. The study is divided into three phases - component (frame material modeling), subsystem (frame sled test) and full system (full vehicle test). In the component level, we investigate the available strain rate data, the performance of various material models in crash codes and the effect of the strain rate in crash simulation. In the subsystem phase, we incorporate the strain rate modeling and expand the scope to include both the forming and the welding effects in the subsystem CAE model to improve the correlation between CAE and test. Finally the improved frame modeling methodology with strain rate, forming and welding effects is adopted in full vehicle model. It is found that the proposed frame modeling methodology is crucial to improve the pulse prediction of a full vehicle in crashes.
Technical Paper

Important Modeling Practices in CAE Simulation for Vehicle Pitch and Drop

2006-04-03
2006-01-0124
Vehicle pitch and drop has become an important subject to crash analysis due to the recent FMVSS208 requirements for unbelted occupant. During frontal impact, the excessive header drop due to significant vehicle pitch and drop can induce the contact between occupant's head and sun visor. To avoid this issue, structure design for reducing vehicle pitch and drop is essential to crash safety. Historically, CAE simulation has been used in structure design during vehicle development process. Therefore, the quality of CAE modeling for replicating vehicle pitch and drop at physical test is crucial for assisting the structure design. In this paper, the most effective components in CAE model to vehicle pitch and drop have been identified and ranked by using the results of the sensitivity study. Hence the model quality can be emphasized on those major components including front horn, kick-down of front frame, body structure at upper load path, and body mounts.
Technical Paper

Role of the Body Mount on the Passenger Compartment Response of a Frame/Body Structured Vehicle in Frontal Crash

1998-02-23
980861
A comprehensive strategy to investigate the role of the body mounts on the passenger compartment response in a frontal crash event is presented. The activities of the study include quasi-static vehicle crush testing, development of a component-level dynamic body mount test methodology, lumped-mass computer modeling, as well as technical analysis. In addition, a means of investigating the effects the body mounts have on the passenger compartment response during a frontal barrier impact is addressed.
Technical Paper

Modeling and Design for Vehicle Pitch and Drop of Body-on-Frame Vehicles

2005-04-11
2005-01-0356
Vehicle pitch and drop play an important role for occupant neck and head injury at frontal impact. The excessive vehicle header drop, due to vehicle pitch and drop during crash, induces aggressive interaction between occupant head and sun visor/header that causes serious head and neck injuries. For most of body-on-frame vehicles, vehicle pitch and drop have commonly been observed at frontal impact tests. It is because the vehicle body is pulled downward by frame rails, which bend down during crash. Hence, the challenges of frame design are not only to absorb crash energy but also to manage frame deformation for minimizing vehicle pitch and drop. In this paper, the finite element method is used to analyze frame deformation at full frontal impact. To ensure the quality of CAE model, a full vehicle FEA model is correlated to barrier tests. In addition, a study of CAE modeling affecting vehicle header drop is performed.
X