Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Application Development of Electric Vehicles and Hybrid Electric Vehicles Balancing Economic Objectives and Technical Requirements

This seminar is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). More and more stringent emission and fuel consumption regulations are pushing the automotive industry towards electrified powertrain and electrified vehicles. This is particularly evident in China, where there is an increased demand for electric (EV) and hybrid electric vehicles (HEV). Infrastructure is being built across the country for convenient charging.
Training / Education

Safe Handling of High Voltage Battery Systems

2022-04-26
Electric and hybrid vehicles are becoming more visible on today's roadways and the automotive companies are working hard to make these vehicles as transparent as possible to enhance consumer acceptance. The battery system forms a key part of any of these vehicles and is probably the least understood. With practically no moving parts the battery systems show no visible or audible warning of any latent dangers. This seminar will introduce participants to the risks encountered in handling high voltage battery systems and their component parts.
Training / Education

Introduction to Hybrid and Electric Vehicle Battery Systems

2021-11-01
Driven by the need for lower emissions, better fuel economy and higher efficiency, hybrid vehicles are appearing in many different configurations on today's roadways. While the powertrain components such as the drive motor, motor controller and cooling system are somewhat familiar to the automotive industry, the battery systems are a relatively unfamiliar aspect. This seminar will introduce participants to the concepts of hybrid vehicles, their missions and the role of batteries in fulfilling those requirements.
Magazine

SAE Vehicle Electrification: February 11, 2014

2014-02-11
Inside the cell walls The high cost of lithium-ion batteries is a prison that has largely kept electric vehicles off the street; the keys to their release are more effective—but not more expensive—cell chemistries.
Book

Toyota R&D Technical Review 2011

2011-08-01
Giving unique insight into Toyota's 2011 technical developments, this book includes 18 papers that chronicle the Japanese OEM's R&D activities in a variety of technologies during that year. This volume has a special focus on next-generation electric storage, and 10 of the papers highlight developments in such things as batteries, fuel cells and next-generation energy. Title highlights include: Next Generation Electric Storage and Its Applications • Secondary Battery Development for Hybrid Vehicles at Toyota • Development Trends and Popularization Trends for Fuel Cell Vehicles • Renewable Energy and Its Effective Usage Other Technical Areas • Drivetrain Development for the Lexus LFA • Development of Scratch-Resistant Universal Clear Coat • Development of Environmentally Friendly Machining Process for Aluminum Parts
Standard

Quick Connect Fluid Coupling Specification for Water/Glycol Coolant System Interconnect

2019-07-22
WIP
J3207
This SAE Recommended Practice defines the dimensional characteristics and minimum performance requirements for quick connect couplings between flexible tubing or hose and rigid tubing or tubular fittings used in glycol/water coolant systems. This document applies to automotive and truck applications under the following conditions: a. Gasoline, diesel, hybrid, and electrical propulsion cooling systems. b. Operating pressure up to 206 kPa, 2.06 bar, (30 psig). c. Operating temperatures from -40 °C (-40 °F) to 125 °C (260 °F). Quick connect couplings function by joining the connector to a mating end form typically without the use of tools. The requirements stated in this document apply to new connectors in assembly operations unless otherwise indicated.
Video

SAE Demo Day in Tampa - Highlights

2018-08-14
In May 2018, SAE International in partnership with THEA and leading AV technology companies gave citizens in Tampa a chance to test ride the future. The event included a pre- and post-ride survey, a ride in an automated vehicle, interactive displays and engagement with industry experts. See highlights of the event and feedback from participants.
Technical Paper

Application of Shape Memory Heat Engines to Improving Vehicle Fuel Economy

1996-04-01
91A128
Shape memory materials undergo temperature-induced martensitic phase transformations that involve reversible dimensional changes. In performing these changes in shape, the shape-memory material is able to do work against external constraints, and this is the basis for shape-memory low-temperature heat engines. The transformation temperatures on heating and cooling are often not very different (little hysteresis) and are well defined and reproducible. Furthermore, these temperatures can be adjusted by varying the composition of the shape memory alloy. Internal combustion engines dissipate approximately two-thirds of the fuel energy as heat to the exhaust and coolant systems. A low-temperature heat engine could convert a fraction of this heat energy to useful work. This paper discusses the conceptual basis for the application of shape memory heat engines to internal combustion engine powered vehicles. Metallurgical and thermodynamic factors are discussed, as well as engine efficiency.
Technical Paper

Simulors, An Innovative Tool for Molds Development

1996-04-01
91A117
Mold designers and foundrymen spend a lot of time in developing molds without knowing exactly the phenomena which take place inside. Simulor, which has been used in an industrial environment for two years, offers the solution to make foundrymen understand what happens during the filling of the mold and the solidification of the part. Based on navier-stokes and heat transfer equations, simulor provides speed distribution and metal front evolution in the cavity and thermal map in the mold and the part. Some examples with different metals (cast iron, aluminum alloy) cast with various processes (sand or die casting, low pressure or gravity casting) will be given. This new tool will given foundrymen the opportunity to test the mold before having it machined and will also allow reduction in development delays.
Technical Paper

Input Loading for Squeak & Rattle CAE Analysis

1999-05-17
1999-01-1726
A method to create a CAE load by utilizing the vibration motions at structure attachments has been developed. This method employs the concept of enforced motion as the constraints of boundary conditions to create an equivalent input force/moment matrix for a sub-structure with multi-point attachments. The main assumption is that motions at the attachments of the sub-structure should be the same as the known motions of the main structure under the generated input load. The key concept of the developed methodology is the calculation of the input dynamic compliance matrix for sub-structure attachment locations. This method is developed to create a system level input load to be used for squeak and rattle CAE analysis on a component or sub-system. It can also be used for minor component design change evaluation using only the component CAE model, yet as if it is assembled in the vehicle.
Technical Paper

Developing Robust Vibration Excitation and Control Methods for Evaluating Rattle Noise in Automotive Components

1999-05-17
1999-01-1725
The authors participated in a task force that was required to develop a repeatable, dependable, and reliable test procedure to compare, rate, and evaluate the severity of rattles. The assemblies involved in the study are designed and manufactured by different companies and are tested by different people on test equipment and instrumentation from different suppliers. The challenges therefore, were considerable and involved both the vibration inputs and responses as well as the acoustic responses. At the beginning of this activity, it was observed that different test labs using the same Ford vibration specs were obtaining different sounds from the same test item! Clearly, this was unacceptable and the test methods had to be improved and standardized. This paper focuses on vibration related to rattle testing. The particular assemblies used in this study were seat belt retractors.
Technical Paper

The Effects of Retained Fluid and Humidity on the Evacuation of Critical Vehicle Systems

1999-05-10
1999-01-1630
In automotive assembly facilities worldwide, many critical vehicle systems such as brakes, power steering, radiator, and air conditioning require the appropriate fluid to function. In order to insure that these critical vehicle systems receive the correct amount of properly treated fluid, automotive manufacturers employ a method called Evacuation and Fill. Due to their closed-loop design, many critical vehicle systems must be first exposed to vacuum prior to being flooded with fluid. Only after the evacuation and fill process is complete will the critical vehicle system be able to perform as specified. It has long been thought, but never proven, that humidity and entrenched fluid were major hindrances to the Evacuation and Fill process. Consequently, Ford Motor Company Advanced Manufacturing Technology Development, Sandalwood Enterprises, Kettering University, and Dominion Tool & Die conducted a detailed project on this subject.
Technical Paper

Acoustical Advantages of a New Polypropylene Absorbing Material

1999-05-17
1999-01-1669
Sound absorption is one way to control noise in automotive passenger compartments. Fibrous or porous materials absorb sound in a cavity by dissipating energy associated with a propagating sound wave. The objective of this study was to evaluate the acoustic performance of a cotton fiber absorbing material in comparison to a new polypropylene fibrous material, called ECOSORB ®. The acoustical evaluation was done using measurements of material properties along with sound pressure level from road testing of a fully-assembled vehicle. The new polypropylene fibrous material showed significant advantages over the cotton fiber materials in material properties testing and also in-vehicle measurements. In addition to the performance benefits, the polypropylene absorber provided weight savings over the cotton fiber material.
Technical Paper

A Method to Measure Air Conditioning Refrigerant Contributions to Vehicle Evaporative Emissions (SHED Test)

1999-05-03
1999-01-1539
Although the intent of the SHED test (Sealed Housing for Evaporative Determination) is to measure evaporative fuel losses, the SHED sampling methodology in fact measures hydrocarbons from all vehicle and test equipment sources. Leakage of air conditioning (AC) refrigerant is one possible non-fuel source contributing to the SHED hydrocarbon measurement. This report describes a quick and relatively simple method to identify the contribution of AC refrigerant to the SHED analyzer reading. R134A (CH2FCF3), the hydrofluorocarbon refrigerant used in all current automotive AC systems, as well as its predecessor, the chlorofluorocarbon R12, can be detected using the gas chromatography methods currently in place at many emissions labs for the speciation of exhaust and evaporative hydrocarbon emissions.
Technical Paper

Shoebox Converter Design for Thinwall Ceramic Substrates

1999-05-03
1999-01-1542
Shoebox catalytic converter design to securely mount thinwall substrates with uniform mounting mat Gap Bulk Density (GBD) around the substrate is developed and validated. Computational Fluid Dynamic (CFD) analysis, using heat transfer predictions with and without chemical reaction, allows to carefully select the mounting mat material for the targeted shell skin temperature. CFD analysis enables to design the converter inlet and outlet cones to obtain uniform exhaust gas flow to achieve maximum converter performance and reduce mat erosion. Finite Element Analysis (FEA) is used to design and optimize manufacturing tool geometry and control process. FEA gives insight to simulate the canning process using displacement control to identify and optimize the closing speed and load to achieve uniform mat Gap Bulk Density between the shell and the substrate.
Technical Paper

The Application of Ceramic and Catalytic Coatings to Reduce the Unburned Hydrocarbon Emissions from a Homogeneous Charge Compression Ignition Engine

2000-06-19
2000-01-1833
An experimental and theoretical study of the effect of thermal barriers and catalytic coatings in a Homogeneous Charge Compression Ignition (HCCI) engine has been conducted. The main intent of the study was to investigate if a thermal barrier or catalytic coating of the wall would support the oxidation of the near-wall unburned hydrocarbons. In addition, the effect of these coatings on thermal efficiency due to changed heat transfer characteristics was investigated. The experimental setup was based on a partially coated combustion chamber. The upper part of the cylinder liner, the piston top including the top land, the valves and the cylinder head were all coated. As a thermal barrier, a coating based on plasma-sprayed Al2O3 was used. The catalytic coating was based on plasma-sprayed ZrO2 doped with Platinum. The two coatings tested were of varying thickness' of 0.15, 0.25 and 0.6 mm. The compression ratio was set to 16.75:1.
Technical Paper

Measurement of Instantaneous Heat Flux Flowing Into Metallic and Ceramic Combustion Chamber Walls

2000-06-19
2000-01-1815
Accurate measurements of combustion gas temperature and the coefficient of heat transfer between the gas and the combustion chamber wall of internal combustion engine in cyclic operations are difficult at present. Hence the only method available for determination of states of thermal load and heat loss to the combustion chamber wall in a cycle is to measure the instantaneous temperature on the combustion chamber wall surface accurately and precisely using proper thin-film thermocouples, then to calculate the instantanenous heat flux flowing into the wall surface by means of numerical analysis. However, it is necessary to pay adequate attention to the effects of thermophysical properties of the thermocouple materials on the measured values, since any thermocouple consists of several kinds of materials which are different from those of portions to be measured.
Technical Paper

Artificial Neural Network Based Energy Storage System Modeling for Hybrid Electric Vehicles

2000-04-02
2000-01-1564
The modeling of the energy storage system (ESS) of a Hybrid Electric Vehicle (HEV) poses a considerable challenge. The problem is not amenable to physical modeling without simplifying assumptions that compromise the accuracy of such models. An alternative is to build conventional empirical models. Such models, however, are time-consuming to build and are data-intensive. In this paper, we demonstrate the application of an artificial neural network (ANN) to modeling the ESS. The model maps the system's state-of-charge (SOC) and the vehicle's power requirement to the bus voltage and current. We show that ANN models can accurately capture the complex, non-linear correlations accurately. Further, we propose and deploy our new technique, Smart Select, for designing ANN training data.
Technical Paper

Graphitic Foam Thermal Management Materials for Electronic Packaging

2000-04-02
2000-01-1576
The goal of this program is to utilize the recently developed high conductivity carbon foam for thermal management in electronics (heat exchangers and heat sinks). The technique used to fabricate the foam produces mesophase pitch-based graphitic foam with extremely high thermal conductivity and an open-celled structure. The thermal properties of the foam have been increased by 79% from 106 to 187 W/m·K at a density of 0.56 g/cm3 through process optimization. It has been demonstrated that when the high-thermal-conductivity graphitic foam is utilized as the core material for the heat exchanger, the effective heat transfer can be increased by at least an order of magnitude compared to traditional designs. A once-through-foam core/aluminum-plated heat exchanger has been fabricated for testing in electronic modules for power inverters.
Technical Paper

Excitation of the Automobile Alternator with the Claw Pole Rotor by Means of Stator Winding

2000-04-02
2000-01-1572
It is known, that the alternator self-excitation is possible at capacitor loading [1]. From this follows, that the alternator excitation by means of capacitors connected to one or several stator windings, as from simple excitation winding is located on a rotor, is possible. In the report the excitation of the automobile alternator with claw pole rotor by means of capacitors connected to stator windings at rotor open excitation circuit is considered. Thus, for comparison the alternator idle characteristics are received both at excitation by means capacitors, and by means of a simple excitation winding. Besides the other electrical parameters of the alternator with claw pole rotor by experimental way are determined. On the basis of the received data the alternator digital model was developed, it takes into account the magnetic circuit saturation, by using of the received experimental idle characteristics.
X