Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Application Development of Electric Vehicles and Hybrid Electric Vehicles Balancing Economic Objectives and Technical Requirements

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese).   More and more stringent emission and fuel consumption regulations are pushing the automotive industry toward electrified powertrain and electrified vehicles. This is particularly evident in China, where there is an increased demand for  (EV) and (HEV). Infrastructure is being built across the country for convenient charging. It must now be determined how to meet the technical targets for EV/HEV regulations under economic constraints and how to best develop the major ePowertrain components (battery and motor).
Training / Education

Powertrain Product Development for Electrified Vehicles

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). Transmission and driveline products for new energy vehicles are different in many aspects from their counterparts in traditional vehicles. Participants will have a chance to develop in-depth, practical, and hands-on knowledge regarding system configuration, key subsystems and components design, system control, testing, design verification, and so forth. Common problems such as reliability, durability, NVH as well as related technology trends will be addressed from an engineer's viewpoint.
Training / Education

EV Motor Design Analysis and Test Verification

This course, designed for EV motor engineers and graduate participants, systematically introduces EV motor design analysis and test verification. Combined with engineering practice, it discusses typical EV motor design cases and practical issues related to EV motor technology, aiming to broaden the horizon of EV motor design engineers and improve their problem-solving skills.
Training / Education

Fundamentals and Applications of Electric Motors for Automotive Industries

As the electrification of automobiles is on the rise, it is imperative that the capabilities and limits of the associated devices and systems be understood at a higher level than previously considered adequate. For example, the Tesla Model S has 62 electric motors while the Model X has 70! They propel the vehicle and provide comfort too. Their design must reflect the worst case operating scenarios, duty cycles, environment, country of use and its standards, etc.
Training / Education

Fundamentals of Powertrain Design for Hybrid Electric Vehicles

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). Driven by high fuel prices, environmental regulations, and consumer demand, the market for hybrid electric vehicles (HEV) has experienced rapid growth. Every major automotive company produces an HEV. There are approximately fifty different HEV models on the market and over eight million HEVs already sold. In order to meet current and future demands in the HEV and PHEV markets, success will depend on engineering personnel knowing how to develop and manufacture HEV powertrains.
Training / Education

Introduction to Battery Technology in BEVs, HEVs, and PHEVs

2024-06-20
This course explores the design and performance of battery technologies used in today’s battery-electric vehicles. It focuses on the skills required to define a battery pack design, how battery packs are manufactured, and tests required before entering the market. Participants will leave the course equipped with tools to understand vehicle battery specifications and be able to extract the useful information from the large volume of electric vehicle content published daily. It also defines and analyzes fundamentals of battery operation and performance requirements for HEV, PHEV, EREV and full electric vehicle applications.
Training / Education

Fundamentals of Batteries for Mobility Applications

2024-05-06
How are batteries used in the mobility industry? This three-week hybrid course introduces how batteries fit into the energy context and provides the fundamental knowledge and state-of-the-art insights into battery technologies. It will cover the key role of batteries as a tool for energy storage, the main components and parameters that characterize a battery, and the electrochemical phenomena that lie behind battery operation.
Video

Hybrid Cost Assessment Plus AMT/Hybrid Concept

2012-03-27
Presentation will concentrate on a brief overview of SAE International including history, international focus and SAE electro-mobility ground vehicle standards development activities. The new era of mobility and the driving forces behind it including converging technologies and today�s drive toward �green� will be discussed. Also, standards and technology enablers for vehicle electrification including, the global landscape for EV charging standards and next generation charging method approaches will be reviewed. Additionally, an overview of SAE global EV Battery Standards and activities including industry/government collaborative efforts to develop lithium ion rechargeable energy storage system safety standards will be provided. Presenter Keith Wilson, SAE International
Video

Advanced Testing of Electric Drives and Motors

2012-05-16
It is a challenge to write a good motor specification. Typical spec. problems are omitted or ambiguous requirements, or overly tight tolerances that drive up cost but not value. These problems create hidden penalties in cost, performance, reliability, and development time. This presentation will describe common problems in traction motor specifications and associated penalties, as well as recommendations to avoid them. Topics will include spec.?s for demagnetization, mechanical considerations, torque ripple, performance, and others. Presenter David A. Fulton, Remy Inc.
Video

Safety Element out of Context - A Practical Approach

2012-05-22
ISO 26262 is the actual standard for Functional Safety of automotive E/E (Electric/Electronic) systems. One of the challenges in the application of the standard is the distribution of safety related activities among the participants in the supply chain. In this paper, the concept of a Safety Element out of Context (SEooC) development will be analyzed showing its current problematic aspects and difficulties in implementing such an approach in a concrete typical automotive development flow with different participants (e.g. from OEM, tier 1 to semiconductor supplier) in the supply chain. The discussed aspects focus on the functional safety requirements of generic hardware and software development across the supply chain where the final integration of the developed element is not known at design time and therefore an assumption based mechanism shall be used.
Collection

Fuel Cell Vehicle Applications, 2008

2010-09-23
The 14 papers in this technical paper collection address fuel cell systems; the status of fuel cell vehicle development; hydrogen fuel cell vehicle fuel economy, fleet monitoring and hydrogen fueling; and modeling of fuel cell systems.
Collection

Driver Distraction Research

2010-09-21
This technical collection features 23 technical papers published between 1998-2010 covering topics such as telematics, driver assistance systems, driver fatigue, human machine interfaces, and crash prevention systems.
Collection

Advanced Fuel Cell Vehicle Applications, 2011

2011-04-12
Fuel cell hybrid electric propulsion for automotive applications has the highest potential to offer both zero emissions and long range vehicles while being able to 100 percent refuel in a matter of minutes. The 11 papers in this technical paper collection cover advances in fuel cell powertrain power density; cold start optimization; hydrogen storage and fueling simulation. Modeling, simulation and testing of PEM fuel cell components and systems are also covered.
Collection

Electric Motor & Power Electronics, 2014

2014-04-01
Power electronics and electric motors are essential for improving vehicle efficiency through drivetrain electrification. This technical paper collection covers technologies that support high efficiency, high power density, and low cost motors and power modules are required for the success of vehicle electrification.
Collection

Electric Motor & Power Electronics, 2013

2013-04-09
The 11 papers in this technical paper collection covers technologies that support high efficiency, how power density, and low cost motors and power modules required for the success of vehicle electrication.
X