Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Tire Track Identification: A Method for Drivable Region Detection in Conditions of Snow-Occluded Lane Lines

2022-03-29
2022-01-0083
Today’s Advanced Driver Assistance Systems (ADAS) predominantly utilize cameras to increase driver and passenger safety. Computer vision, as the enabler of this technology, extracts two key environmental features: the drivable region and surrounding objects (e.g., vehicles, pedestrians, bicycles). Lane lines are the most common characteristic extracted for drivable region detection, which is the core perception task enabling ADAS features such as lane departure warnings, lane-keeping assistance, and lane-centering. However, when subject to adverse weather conditions (e.g., occluded lane lines) the lane line detection algorithms are no longer operational. This prevents the ADAS feature from providing the benefit of increased safety to the driver. The performance of one of the leading computer vision system providers was tested in conditions of variable snow coverage and lane line occlusion during the 2020-2021 winter in Kalamazoo, Michigan.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 2: Integration of Machine Learning Vehicle Velocity Prediction with Optimal Energy Management to Improve Fuel Economy

2019-04-02
2019-01-1212
An optimal energy management strategy (Optimal EMS) can yield significant fuel economy (FE) improvements without vehicle velocity modifications. Thus it has been the subject of numerous research studies spanning decades. One of the most challenging aspects of an Optimal EMS is that FE gains are typically directly related to high fidelity predictions of future vehicle operation. In this research, a comprehensive dataset is exploited which includes internal data (CAN bus) and external data (radar information and V2V) gathered over numerous instances of two highway drive cycles and one urban/highway mixed drive cycle. This dataset is used to derive a prediction model for vehicle velocity for the next 10 seconds, which is a range which has a significant FE improvement potential. This achieved 10 second vehicle velocity prediction is then compared to perfect full drive cycle prediction, perfect 10 second prediction.
X