Refine Your Search

Topic

Author

Affiliation

Search Results

Book

Electronic Transmission Controls

2000-06-10
The evolution of the automotive transmission has changed rapidly in the last decade, partly due to the advantages of highly sophisticated electronic controls. This evolution has resulted in modern automatic transmissions that offer more control, stability, and convenience to the driver. Electronic Transmission Controls contains 68 technical papers from SAE and other international organizations written since 1995 on this rapidly growing area of automotive electronics. This book breaks down the topic into two sections. The section on Stepped Transmissions covers recent developments in regular and 4-wheel drive transmissions from major auto manufacturers including DaimlerChrysler, General Motors, Toyota, Honda, and Ford. Technology covered in this section includes: smooth shift control; automatic transmission efficiency; mechatronic systems; fuel saving technologies; shift control using information from vehicle navigation systems; and fuzzy logic control.
Book

Concepts in Turbocharging for Improved Efficiency and Emissions Reduction

2014-09-22
Legislative requirements to reduce CO2 emissions by 2020 have resulted in significant efforts by car manufacturers to explore various methods of pollution abatement. One of the most effective ways found so far is by shortening the cylinder stroke and downsizing the engine. This new engine then needs to be boosted, or turbocharged, to create the full and original load torque. Turbocharging has been and will continue to be a key component to the new technologies that will make a positive difference in the next-generation engines of years to come. Concepts in Turbocharging for Improved Efficiency and Emissions Reduction explores the many ways that turbocharging will deliver concrete results in meeting the new realities of sustainable, green transportation.
Standard

Hydraulic Motor Test Procedures

2009-06-12
CURRENT
J746_200906
This test code describes tests for determining characteristics of hydraulic positive displacement motors as used on construction and industrial machinery as referenced in SAE J1116. These characteristics are to be recorded on data sheets similar to the one shown in Figure 1. Two sets of data sheets are to be submitted: one at 49 °C (120 °F) and one at 82 °C (180 °F).
Book

Emissions and Air Quality

1999-06-09
This book evaluates the current worldwide state of knowledge about the interrelationship between emissions and air quality. This study describes the contribution of passenger car and commercial vehicle traffic to local and global emission situations, and the consequences for the environment.
Standard

Multiposition Small Engine Exhaust System Fire Ignition Suppression

2012-10-23
CURRENT
J335_201210
This SAE Recommended Practice establishes equipment and test procedures for determining the performance of spark arrester exhaust systems of multiposition small engines (<19 kW) used in portable applications, including hand-held, hand-guided, and backpack mounted devices. It is not applicable to spark arresters used in vehicles or stationary equipment.
Standard

Self-Propelled Sweepers and Scrubbers Fuel Consumption of Non-Propulsion Auxiliary Engines

2001-05-14
HISTORICAL
J2542_200105
This SAE Standard applies to the fuel consumption of non-propulsion engines used to drive exclusively the sweeping and cleaning functions of multi-engine sweepers and scrubbers as defined in SAE J2130. The purpose of this document is to derive a uniform expression of fuel consumption from a simulated test cycle. The derived expression is based on various work situations encountered during a typical daily eight-hour period of operation. The derived fuel consumption may be used to assess the sizing of fuel tanks.
Standard

Diesel Fuels

2004-07-28
HISTORICAL
J313_200407
Automotive and railroad diesel fuels, in general, are derived from petroleum refinery products which are commonly referred to as middle distillates. Middle distillates represent products which have a higher boiling range than gasoline and are obtained from fractional distillation of the crude oil or from streams from other refining processes. Finished diesel fuels represent blends of middle distillates. The properties of commercial distillate diesel fuels depend on the refinery practices employed and the nature of the crude oils from which they are derived. Thus, they may differ both with and within the region in which they are manufactured. Such fuels generally boil over a range between 163 and 371 °C (325 to 700 °F). Their makeup can represent various combinations of volatility, ignition quality, viscosity, sulfur level, gravity, and other characteristics. Additives may be used to impart special properties to the finished diesel fuel.
Standard

Diesel Fuels

2017-06-07
CURRENT
J313_201706
Automotive and locomotive diesel fuels, in general, are derived from petroleum refinery products which are commonly referred to as middle distillates. Middle distillates represent products which have a higher boiling range than gasoline and are obtained from fractional distillation of the crude oil or from streams from other refining processes. Finished diesel fuels represent blends of middle distillates and may contain other blending components of substantially non-petroleum origin, such as biodiesel fuel blend stock, and/or middle distillates from non-traditional refining processes, such as gas-to-liquid processes. The properties of commercial distillate diesel fuels depend on the refinery practices employed and the nature of the crude oils from which they are derived. Thus, they may differ both with and within the region in which they are manufactured. Such fuels generally boil, at atmospheric pressure, over a range between 130 °C and 400 °C (approximately 270 °F to 750 °F).
Video

Neural Network-based Optimal Control for Advanced Vehicular Thermal Management Systems

2011-12-05
Advanced vehicular thermal management system can improve engine performance, minimize fuel consumption, and reduce emissions by harmoniously operating computer-controlled servomotor components. In this paper, a neural network-based optimal control strategy is proposed to regulate the engine temperature through the advanced cooling system. Presenter Asma Al Tamimi, Hashemite University
Video

Improvement in OBD Development Process for HEV's

2012-02-01
Hybrid technology has the potential to enable dramatic reductions in greenhouse gases (GHG), such as the California goal of reducing GHG by 80 percent from 1990 levels by 2050. As a result it is expected that hybrid systems will occupy a growing proportion of the market. However, introducing a hybrid system in a vehicle may adversely affect the performance of the engine OBD system in monitoring malfunctions impacting pollutant emissions. For example, a hybrid system that reduces time of the engine in idle or deceleration overrun conditions could make a well-performing engine OBD system noncompliant, by reducing in-use frequency of some OBD monitors below acceptable levels. In this presentation, Ricardo will present a process for evaluating the impact that a hybrid system which has been optimised to minimise GHG emission over a specified drive-cycle will have on the effectiveness of engine OBD monitors.
Video

Development of Hybrid System for Mid-Size Sedan

2011-11-07
The energy crisis and rising gas price in the 2000s led to a growing popularity of hybrid vehicles. Hyundai-Kia Motors has been challenging to develop the new efficient eco-technology since introducing the mild type compact hybrid electric vehicle for domestic fleet in 2004 to meet the needs of the increasing automotive-related environmental issues. Now Hyundai has recently debuted a full HEV for global market, Sonata Hybrid. This system is cost effective solution and developed with the main purpose of improving fuel consumption and providing fun to drive. Presenter Seok Joon Kim, Hyundai Motor Company
Video

General Motors Hybrid Systems and New e-Assist Powertrain

2011-11-18
Hybrid systems have been available for several years now, and offer customers a decrease in fuel consumption and CO2 emissions at an incremental price. Hybrids, in some cases, have offered improved other customer benefits such as reduced noise, vibration and harshness or better acceleration and the satisfaction of increased societal benefit. Sometimes the vehicle utility is compromised by the volume dedicated to energy storage systems. Several hybrid architecture arrangements exist in the market, and offer various levels of hybrid feature. But considering acquisition cost and operating expense, most hybrid vehicles have not offered a direct total cost advantage when compared to non-hybrids. GM's new e-Assist system is highly integrated with the engine and transmission functionality, and takes advantage of the highest value fuel economy enablers available with light electrification.
Video

Experimental Study into a Hybrid PCCI/CI Concept for Next-Generation Heavy-Duty Diesel Engines

2012-06-18
This paper presents the first results of an experimental study into a hybrid combustion concept for next-generation heavy-duty diesel engines. In this hybrid concept, at low load operating conditions, the engine is run in Pre-mixed Charge Compression Ignition (PCCI) mode, whereas at high load conventional CI combustion is applied. This study was done with standard diesel fuel on a flexible multi-cylinder heavy-duty test platform. This platform is based on a 12.9 liter, 390 kW heavy-duty diesel engine that is equipped with a combination of a supercharger, a two-stage turbocharging system and low-pressure and high-pressure EGR circuitry. Furthermore, Variable Valve Actuation (VVA) hardware is installed to have sufficient control authority. Dedicated pistons, injector nozzles and VVA cam were selected to enable PCCI combustion for a late DI injection strategy, free of wall-wetting problems.
Video

2-Stroke CAI Combustion Operation in a GDI Engine with Poppet Valves

2012-06-18
In order to extend the CAI operation range in 4-stroke mode and maximize the benefit of low fuel consumption and emissions in CAI mode, 2-stroke CAI combustion is revived operating in a GDI engine with poppet valves, where the conventional crankcase scavenging is replaced by boosted scavenging. The CAI combustion is achieved through the inherence of the 2-Stroke operation, which is retaining residual gas. A set of flexible hydraulic valve train was installed on the engine to vary the residual gas fraction under the boosting condition. The effects of spark timing, intake pressure and short-circuiting on 2-stroke CAI combustion and its emissions are investigated and discussed in this paper. Results show the engine could be controlled to achieve CAI operation over a wide range of engine speed and load in the 2-stroke mode because of the flexibility of the electro-hydraulic valvetrain system. Presenter Yan Zhang, Brunel University
Video

Eco+ Solutions in High Performance Plastics from DSM for Automotive.

2012-05-22
DSM will present various application solutions in High Performance Plastics enabling to significant weight or friction reduction and thus to reduced fuel consumption and/or emission levels, and on top of that to lower system costs. Typical Eco+ Solutions Examples to be presented are: - Friction Reduction: Nylon 46 in chain tensioners yielding up to 1 % fuel reduction - Weight Reduction (metal-to-plastic conversion): Nylon 46 with long term temperature resistance upto 230 C in turbo components, Nylon 6 in oil pans/sumps, PET in plastic precision parts, Nylon 46 in gears, many other examples - Electrification: Nylon 46 in start/stop and e-motor components, TPC in HV cables - System Cost optimization: High Flow PA6 in various components, TPC in Brake Tubes - Improved LCA: biobased materials as PA410 and TPC-Eco Typical Application Solutions concern: air induction systems, engine and transmission components, electrical systems, structural&safety parts.
Video

Comparison of Powertrain Configuration Options for Plug-in HEVs from a Fuel Economy Perspective

2012-05-25
The first commercially available plug-in hybrid electric vehicle (PHEV), the General Motors (GM) Volt, was introduced into the market in mid-December 2010. The Volt uses a series-split powertrain architecture, which provides benefits over the series architecture that typically has been considered for use in electric-range extended vehicles (EREVs). A specialized EREV powertrain, called the Voltec, drives the Volt through its entire range of speed and acceleration with battery power alone and within the limit of battery energy, thereby displacing more fuel with electricity than a PHEV, which characteristically blends electric and engine power together during driving. This paper assesses the benefits and drawbacks of these two different plug-in hybrid electric architectures (series versus series-split) by comparing component sizes, system efficiency, and fuel consumption over urban and highway drive cycles.
Video

Battery Charge Balance and Correction Issues in Hybrid Electric Vehicles for Individual Phases of Certification Dynamometer Driving Cycles as Used in EPA Fuel Economy Label Calculations

2012-05-23
This study undertakes an investigation of the effect of battery charge balance in hybrid electric vehicles (HEVs) on EPA fuel economy label values. EPA's updated method was fully implemented in 2011 and uses equations which weight the contributions of fuel consumption results from multiple dynamometer tests to synthesize city and highway estimates that reflect average U.S. driving patterns. For the US06 and UDDS cycles, the test results used in the computation come from individual phases within the overall certification driving cycles. This methodology causes additional complexities for hybrid vehicles, because although they are required to be charge-balanced over the course of a full drive cycle, they may have net charge or discharge within the individual phases. As a result, the fuel consumption value used in the label value calculation can be skewed.
Video

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-05-30
The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
Video

Impact of Supervisory Control on Criteria Tailpipe Emissions for an Extended-Range Electric Vehicle

2012-06-05
The Hybrid Electric Vehicle Team of Virginia Tech participated in the three-year EcoCAR Advanced Vehicle Technology Competition organized by Argonne National Laboratory, and sponsored by General Motors and the U.S. Department of Energy. The team established goals for the design of a plug-in, range-extended hybrid electric vehicle that meets or exceeds the competition requirements for EcoCAR. The challenge involved designing a crossover SUV powertrain to reduce fuel consumption, petroleum energy use, regulated tailpipe emissions, and well-to-wheel greenhouse gas emissions. To interface with and control the hybrid powertrain, the team added a Hybrid Vehicle Supervisory Controller, which enacts a torque split control strategy. This paper builds on an earlier paper [1] that evaluated the petroleum energy use, criteria tailpipe emissions, and greenhouse gas emissions of the Virginia Tech EcoCAR vehicle and control strategy from the 2nd year of the competition.
X