Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Design of a Pusher for a Crimp Using Finite Element Shape Optimization

1998-09-14
982060
Design analysts, who work with finite element shape optimization, face a daunting task of handling cylindrical parts like a pusher for a crimp. The shape vectors generated by any of the existing methods/tools cannot constrain nodes to move in a circular path. Since the pusher is not a complete cylinder and the loading is only along axial direction, shape optimization was performed after flattening out the cylindrical pusher. The existing shape optimization tools could now be applied to the flat plate. A numerical interpolation method, based on ‘Autodv’, has been used to generate shape vectors. Both weight and stresses have been brought down and the final design was verified with solid finite element analysis.
Technical Paper

Finite Element Topography and Shape Optimization of a Jounce Bumper Bracket

2002-03-19
2002-01-1468
A case study of the application of topography and shape optimization techniques to the design of a jounce bumper bracket of a pick-up truck has been presented. First a sizing (gage) optimization was undertaken to redesign the jounce bumper bracket. Since the weight was not satisfactory it was decided to try shape optimization. A better solution was obtained. Topography optimization, a relatively new technique of bead formation, was then applied and a still better solution was obtained. All these options were presented to the designer to enable him to make a decision based on manufacturing and other constraints. Although all the three solutions seems to give good results the topography optimized jounce bracket results in the least weight, with the penalty of an additional manufacturing operation.
Technical Paper

The Effects of Mid-Channel Ash Plug on DPF Pressure Drop

2016-04-05
2016-01-0966
It has been observed that a certain percentage of diesel particulate filters (DPFs) from the field form mid-channel ash plugs both in light duty and heavy duty applications. As revealed in a post mortem study, some field samples have ash plugs of 3-10 cm length in the middle of DPF inlet channels, which can potentially reduce the inlet channel volume by more than 50%. As a result, the mid-channel ash plug reduces the effective filtration area and decreases the effective channel open width in the middle of the channel. This explains why these filters are reported as having large increases in pressure drop. Moreover, the mid-channel ash deposits reduce the DPF service life and render the filter cleaning process ineffective. In the present study, an open source CFD tool is applied to study the 3D flow crossing two representative inlet and outlet DPF channels where the inlet channels have mid-channel ash plugs.
Technical Paper

Dual-Fuel Gasoline-Alcohol Engines for Heavy Duty Trucks: Lower Emissions, Flexible-Fuel Alternative to Diesel Engines

2018-04-03
2018-01-0888
Long-haul and other heavy-duty trucks, presently almost entirely powered by diesel fuel, face challenges meeting worldwide needs for greatly reducing nitrogen oxide (NOx) emissions. Dual-fuel gasoline-alcohol engines could potentially provide a means to cost-effectively meet this need at large scale in the relatively near term. They could also provide reductions in greenhouse gas emissions. These spark ignition (SI) flexible fuel engines can provide operation over a wide fuel range from mainly gasoline use to 100% alcohol use. The alcohol can be ethanol or methanol. Use of stoichiometric operation and a three-way catalytic converter can reduce NOx by around 90% relative to emissions from diesel engines with state of the art exhaust treatment.
Technical Paper

Clutch Engagement Simulation: Engagement with Throttle

1992-11-01
922483
The present paper is a continuation of engineering efforts devoted mathematical modeling and computer simulation presented in [1]. The modeling and study is extended on starting a vehicle with use of a throttle. The basic mathematical model utilized in [1] has had to be modified because clutch engagement with throttle make investigators consider new human factors contributing strongly to starting conditions. In particular, not only the clutch release but also the accelerator pedal are controlled by a vehicle operator. This has made the authors modify the definition of an ideal engagement and incorporate both the throttle level and the throttle lead time to the mathematical model. Moreover, the model has been adjusted to consolidate dissimilar low range characteristics for diesel and gas engines.
Technical Paper

Engineering Method for Rating Shift Quality

1993-11-01
932996
It is common for difficult shifting to occur in synchronized transmissions. High shift effort is recognized as a basic performance malfunction that takes place during synchronization. This paper examines shift quality in vehicles with synchronized transmissions. The present study is working on three categories: a mathematical model and computer simulation of transmission shifts, an experimental verification of the model and program, and an engineering method for rating shift quality. The mathematical model in this study is a refinement of a model from an earlier paper [1]. With experience, this model has seen revisions that allow the results to be more accurate than the previous ones. The model takes into considerations many elements that affect the synchronizing process such as: synchronizing torque, inertia of both clutch disc(s) and transmission components, clutch drag, viscous drag in the transmission, shifting RPM's, etc.
Technical Paper

Reduced Instruction Set Computers Versus Complex Instruction Set Computers for Gasket Finite Element Analysis

1992-09-01
921706
The intent of this paper will be to address the level of performance and cost of the various complex instruction set computers (CISC-80X86) versus the reduced instruction set computers (RISC). The original concept of reduced instruction set computers will be explained. The above information will be contrasted with how the second generation system functions. Once the operations are established, a discussion of operating performance as related to several types of benchmarks will be cited. A typical FEA model will be used as the final benchmark to determine realistic performance versus speed (wall clock time). The final comparison will be of cost.
Technical Paper

Research Alliances, A Strategy for Progress

1995-09-01
952146
In today's business climate rapid access to, and implementation of, new technology is essential to enhance competitive advantage. In the past, universities have been used for research contracts, but to fully utilize the intellectual resources of education institutions, it is essential to approach these relationships from a new basis: alliance. Alliances permit both parties to become active participants and achieve mutually beneficial goals. This paper will examine the drivers and challenges for industrial -- university alliances from both the industrial and academic perspectives.
Technical Paper

Rapid Prototyping Shortens Hydraulic Component Development Time

1995-09-01
952109
A few years ago hydraulic fluid power component manufacturers had the luxury of long lead times to develop new products. In today's competitive global market, pump and valve design engineers must be able to shorten development lead times and get new, less costly products to production in order to satisfy customer demands. This paper describes how one fluid power component manufacturer uses rapid prototyping technology to speed up the development cycle by making: fit and form models, design evaluation test samples, and tooling for prototype castings.
Technical Paper

Design and Development of New Spicer S400-S Tandem Axle

1995-11-01
952667
The design objective of the Spicer S400-S axle program was to develop a light weight, lower torsional vibration, long life tandem drive axle for the heavy truck industry. This was accomplished with the incorporation of a number of new product features and technical advancements, both in design and manufacturing. These include: reduced standouts for improved interaxle driveline angles use of finite element analysis fixed pinion mounting optimization of lube flow and direction of lubrication optimized gear design for improved strength and noise reduction. This paper focuses on these features and also on the development process for the axle, including the use of simultaneous engineering. Utilizing simultaneous engineering, the S400-S was developed from concept to full production in fifteen months.
Technical Paper

Hydraulic Safety Valve Design Using PC Simulation

1996-08-01
961835
In today's global fluid power industry, successful hydraulic component manufacturers must utilize technical resources to maintain a competitive edge. When designing new products, past practice required an understanding of engineering theory and reliable and accurate lab and field testing of new products, but today's designers have a new tool at their disposal. Personal computer based software can be used to model and simulate individual hydraulic components or entire systems before prototypes are available for design and performance evaluation. This paper discusses the design of a hydraulic safety valve and how PC simulation was used to design and analyze valve performance during the design process.
Technical Paper

Heat Generation from Hydraulic System Losses in Refuse Packers

1996-08-01
961836
Heat generated in hydraulic systems can be responsible for reduced life of equipment. Current Industry trends look to load-sensing variable-displacement pumps and closed-center valves to combat the problem. A comparison is made between the load-sensing variable-displacement pump with closed-center control valves and the fixed-displacement pump (both wet and dry valve types) with open-center control valves, to determine the heat generation tradeoffs. The use of tanks, lines and cylinders as a heat radiator is considered. Heat generated by high-pressure leakage of driven members is addressed. The primary focus of this paper is on packer and body hydraulics of refuse trucks.
Technical Paper

A New Heavy Duty Twin Countershaft Transmission Family

1988-10-01
881836
Spicer has developed a new family of transmissions for the class 8 series truck. This paper describes the specifications, design features and thought processes that generated this new transmission design.
Technical Paper

Computer Aided Gear Design - From Design Concept to Detailed Drawing

1988-10-01
881838
The objective of this paper is to show the gains in productivity and accuracy from the use of the computer in the gear design process. These gains are not limited to the initial concept and analysis stages, but also are applied to the design fine tuning and final drawing stages. This is done by the use of programs running on a number of computers. These programs range from initial design routines through to the generation of the final drawing. Interfacing programs must share a common database throughout all stages of the design process to stream line the procedure.
Technical Paper

Flex Fuel Gasoline-Alcohol Engine for Near Zero Emissions Plug-In Hybrid Long-Haul Trucks

2019-04-02
2019-01-0565
Internal combustion engines for plug-in hybrid heavy duty trucks, especially long haul trucks, could play an important role in facilitating use of battery power. Power from a low carbon electricity source could thereby be employed without an unattractive vehicle cost increase or range limitation. The ideal engine should be powered by a widely available affordable liquid fuel, should minimize air pollutant emissions, and should provide lower greenhouse gas emissions. Diesel engines could fall short in meeting these objectives, especially because of high emissions. In this paper we analyze the potential for a flex fuel gasoline-alcohol engine approach for a series hybrid powertrain. In this approach the engine would provide comparable (or possibly greater) efficiency than a diesel engine while also providing 90 around lower NOx emissions than present cleanest diesel engine vehicles. Ethanol or methanol would be employed to increase knock resistance.
Technical Paper

Finite Element Modeling Spur and Helical Gears in Contact

1992-11-01
922440
Designing highly loaded spur and helical gears for truck transmissions that are both strong and quiet requires an analysis method that can easily be implemented and also provides information on bending stress, load distribution, and transmission error. The finite element method is capable of providing this information, but the time needed to create such a model is very great. In order to reduce the modeling time, a preprocessor program that creates the geometry needed for a finite element analysis has been developed. While requiring a minimum of user input, the program generates a three-dimensional model of contacting spur or helical gears using eight node brick elements. Gap elements are used to model the contact that normally occurs between meshing gear teeth as well as the contact that may occur off the line of action due to the teeth deflecting under load.
Technical Paper

Effect of Wet Liner Vibration on Ring-liner Interaction in Heavy-duty Engines

2023-09-29
2023-32-0140
Lubricating oil consumption (LOC) is a direct source of hydrocarbon and particulate emissions from internal combustion engines. LOC also inhibits the lifetime of exhaust aftertreatment system components, preventing their ability to effectively filter out other harmful emissions. Due to its influence on piston ring- bore conformability, bore distortion is arguably the most critical parameter for engine designers to consider in prevention of LOC. Bore distortion also has a significant influence on the contact forces between the piston ring and cylinder wall, which determine the wear rate of the ring and cylinder wall and can cause durability issues. Two drivers of bore distortion: thermal expansion and head bolt stresses, are routinely considered in conformability and contact analyses. Separately, bore distortion/vibration due to piston impact and combustion/cylinder pressures has been previously analyzed in wet liner engines for coolant cavitation and noise considerations.
Technical Paper

Optimization of the IC Engine Piston Skirt Design Via Neural Network Surrogate and Genetic Algorithms

2024-04-09
2024-01-2603
Internal combustion (IC) engines still power most of the vehicles on road and will likely to remain so in the near future, especially for heavy duty applications in which electrification is typically more challenging. Therefore, continued improvements on IC engines in terms of efficiency and longevity are necessary for a more sustainable transportation sector. Two important design objectives for heavy duty engines with wet liners are to reduce friction loss and to lower the risks of cavitation damages, both of which can be greatly influenced by the piston-liner clearance and the design of the piston skirt. However, engine design optimization is difficult due to the nonlinear interactions between the key design variables and the design objectives, as well as the multi-physics and multi-scale nature of the mechanisms that are relevant to the design objectives.
X