Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Effective Writing for Engineering and Technical Professionals

The ability to write concise and unambiguous reports, proposals, manuals, or other technical documents is a key skill for any high-functioning engineer or technical staff person in the mobility industries. Through a combination of class discussions, interactive workshop activities, assignments, checker teams (review teams) and job aids, this course delivers real-life technical writing techniques and tools that can be immediately applied. Participants discover the importance of knowing their audiences and how to communicate technical information in a 'user-friendly' style.
Training / Education

Applied Vehicle Dynamics

2024-09-23
Take notes! Take the wheel! There is no better place to gain an appreciation for vehicle dynamics than from the driver’s seat. Spend three, intense days with a world-renowned vehicle dynamics engineer and SAE Master Instructor, his team of experienced industry engineers, and the BMW-trained professional driving instructors. They will guide you as you work your way through 12 classroom modules learning how and why vehicles go, stop and turn. Each classroom module is immediately followed by an engaging driving exercise on BMW’s private test track.
Collection

Commercial Vehicles Chassis, Suspension, and Tire Modeling and Simulation Studies, 2013

2013-09-25
This technical paper collection is intended to include papers that will discuss and promote the recent advances in the modeling and analysis of commercial vehicle chassis, suspension, and tire modeling and simulation. Topics include, but are not limited to: commercial vehicle dynamics; chassis control devices such as ABS, traction control, yaw/roll stability control, and potentially the interplay with suspension control; chassis modeling and simulation to study and resolve issues pertaining to ride comfort, crash/deformation, and safety structure; suspension modeling and simulation studies covering passive and active control methodologies; and tires which would cover new and/or improved modeling techniques.
Collection

Steering and Suspension Technology Symposium, 2017

2017-03-28
The papers in this collection are to provide a forum for presentations on steering and suspension related topics as it applies to ground vehicles. Papers address new approaches as well as advances in application of steering, suspension related technologies.
Journal Article

Hydro-Pneumatic Energy Harvesting Suspension System Using a PSO Based PID Controller

2018-08-01
Abstract In this article, a unique design for Hydro-Pneumatic Energy Harvesting Suspension HPEHS system is introduced. The design includes a hydraulic rectifier to maintain one-way flow direction in order to obtain maximum power generation from the vertical oscillation of the suspension system and achieve handling and comfort car drive. A mathematical model is presented to study the system dynamics and non-linear effects for HPEHS system. A simulation model is created by using Advanced Modeling Environment Simulations software (AMEsim) to analyze system performance. Furthermore, a co-simulation platform model is developed using Matlab-Simulink and AMEsim to optimize the PID controller parameters of the external variable load resistor applied on the generator by using Particle Swarm Optimization (PSO).
Journal Article

Enhanced Lateral and Roll Stability Study for a Two-Axle Bus via Hydraulically Interconnected Suspension Tuning

2018-11-19
Abstract The suspension system has been shown to have significant effects on vehicle performance, including handling, ride, component durability, and even energy efficiency during the design process. In this study, a new roll-plane hydraulically interconnected suspension (HIS) system is proposed to enhance both roll and lateral dynamics of a two-axle bus. The roll-plane stability analysis for the HIS system has been intensively explored in a number of studies, while only few efforts have been made for suspension tuning, especially considering lateral plane stability. This article aims to explore the integrated lateral and roll dynamics by suspension tuning of a two-axle bus equipped with HIS system. A ten-degree-of-freedom (DOF) lumped-mass vehicle model is integrated with either transient mechanical-hydraulic model for HIS or the traditional suspension components, namely, shock absorber and anti-roll bar (ARB).
Collection

Commercial Vehicle Engine Exhaust Aftertreatment & Integration, 2011

2011-09-13
The 12 papers in this technical paper collection discuss technologies that address the treatment of engine exhaust emissions to meet commercial vehicle requirements. The scope covers developments in catalysis, materials, controls, and integration with the complete engine/vehicle system.
Collection

Commercial Vehicle Modeling of Chassis, Suspension, and Tires, 2011

2011-09-13
This technical paper collection features 10 papers dedicated to chassis, suspension, and tire modeling and simulation developed for and applied to vehicle systems. Topic covered include vehicle modeling, vehicle dynamic simulation analysis (handling, ride comfort, mobility, durability, etc.), and vehicle design.
Journal Article

Modularity Adoption in Product Development: A Case Study in the Brazilian Agricultural Machinery Industry

2014-01-15
2013-01-9093
Facing a competitive and globalized market and with increasingly demanding customers, companies must constantly seek the development of practices in the development of new products. One of the current practices is the adoption of modularity. In that sense, the objective of this paper is to conduct an analysis of this practice in a Brazilian company, which manufactures agricultural machinery. The applicability of modular design in current products is focused. Therefore, a case study approach has been chosen. First, a review of the scientific literature was conducted, followed by field research, for collecting data based on interviews with product engineers and technical documentation. The case study shows the applicability of the modular design concept in a combine header, by increasing the number of repeated components. The modular header approach facilitates the implementation of engineering changes and allows greater standardization of components.
Journal Article

A Sequence Retainable Iterative Algorithm for Rainflow Cycle Counting

2014-01-15
2013-01-9091
To get a sequence retainable rainflow cycle counting algorithm for fatigue analysis, an alternate equivalent explanation to rainflow cycle counting is introduced, based on which an iterative rainflow counting algorithm is proposed. The algorithm decomposes any given load-time history with more than one crest into three sub-histories by two troughs; each sub-history with more than one crest is iteratively decomposed into three shorter sub-histories, till each sub-history obtained contains only one single or no crest. Every sub-history that contains a single crest corresponds to a local closed (full) cycle. The mean load and alternate load component of the local cycle are calculated in parallel with the iterative procedure.
Journal Article

Components Durability, Reliability and Uncertainty Assessments Based on Fatigue Failure Data

2014-09-30
2014-01-2308
Road vibrations cause fatigue failures in vehicle components and systems. Therefore, reliable and accurate damage and life assessment is crucial to the durability and reliability performances of vehicles, especially at early design stages. However, durability and reliability assessment is difficult not only because of the unknown underlying damage mechanisms, such as crack initiation and crack growth, but also due to the large uncertainties introduced by many factors during operation. How to effectively and accurately assess the damage status and quantitatively measure the uncertainties in a damage evolution process is an important but still unsolved task in engineering probabilistic analysis. In this paper, a new procedure is developed to assess the durability and reliability performance, and characterize the uncertainties of damage evolution of components under constant amplitude loadings.
Journal Article

Development of a Dynamic Vibration Absorber to Reduce Frame Beaming

2014-09-30
2014-01-2315
This paper describes the development and testing of a Dynamic Vibration Absorber to reduce frame beaming vibration in a highway tractor. Frame beaming occurs when the first vertical bending mode of the frame is excited by road or wheel-end inputs. It is primarily a problem for driver comfort. Up until now, few options were available to resolve this problem. The paper will review the phenomenon, design factors affecting a vehicle's sensitivity to frame beaming, and the principles of Dynamic Vibration Absorbers (AKA Tuned Mass Dampers). Finally, the paper will describe simulation and testing that led to the development of an effective vibration absorber as a field fix.
Journal Article

Relative Performance Analyses of Independent Front Axle Suspensions for a Heavy-Duty Mining Truck

2014-09-30
2014-01-2320
A range of axle suspensions, comprising hydro-pneumatic struts and diverse linkage configurations, have evolved in recent years for large size mining trucks to achieve improved ride and higher operating speeds. This paper presents a comprehensive analysis of different independent front suspension linkages that have been implemented in various off-road vehicles, including a composite linkage (CL), a candle (CA), a trailing arm (TA), and a double Wishbone (DW) suspension applied to a 190 tons mining truck. Four different suspension linkages are modeled in MapleSim platform to evaluate their kinematic properties. The relative kinematic properties of the suspensions are evaluated in terms of variations in the kingpin inclination, caster, camber, toe-in and horizontal wheel center displacements considering the motion of a hydro-pneumatic strut. The results revealed the CL and DW suspensions yield superior kinematic response characteristics compared to the CA and TA suspensions.
Journal Article

Ride Optimization for a Heavy Commercial Vehicle

2014-04-01
2014-01-0843
The ride comfort of the commercial vehicle is mainly affected by several vibration isolation systems such as the primary suspension system, engine mounting system and the cab mounting system. A rigid-flexible coupling model for the truck was built and analyzed in multi-body environment (ADAMS). The method applying the excitation on the wheels center and the engine mountings in time domain was presented. The variables' effects on the ride performance were studied by design of experiment (DOE). The optimal design was obtained by the co-simulation of the ADAMS/View, iSIGHT and Matlab. It was found that the vertical root mean square (RMS) acceleration and frequency-weighted RMS acceleration on the seat track were reduced about 17% and 11% respectively at different speeds relative to baseline according to ISO 2631-1.
Journal Article

Modeling Air-Spring Suspension System of the Truck Driver Seat

2014-04-01
2014-01-0846
The suspension system of a heavy truck's driver seat plays an important role to reduce the vibrations transmitted to the seat occupant from the cab floor. Air-spring is widely used in the seat suspension system, for the reason that its spring rate is variable and it can make the seat suspension system keep constant ‘tuned’ frequency compared to the conventional coil spring. In this paper, vibration differential equation of air-spring system with auxiliary volume is derived, according to the theory of thermodynamic, hydrodynamics. The deformation-load static characteristic curves of air-spring is obtained, by using a numerical solution method. Then, the ADAMS model of the heavy truck's driver seat suspension system is built up, based on the structure of the seat and parameters of the air-spring and the shock-absorber. At last, the model is validated by comparing the simulation results and the test results, considering the seat acceleration PSD and RMS value.
Journal Article

Chassis Dynamometer as a Development Platform for Vehicle Hardware In-the-Loop “VHiL”

2013-05-15
2013-01-9018
This manuscript provides a review of different types and categorization of the chassis dynamometer systems. The review classifies the chassis dynamometers based on the configuration, type of rollers and the application type. Additionally the manuscript discusses several application examples of the chassis dynamometer including: performance and endurance mileage accumulation tests, fuel efficiency and exhaust emissions, noise, vibration and harshness testing (NVH). Different types of the vehicle attachment system in the dynamometer cell and its influences on the driving force characteristics and the vehicle acoustic signature is also discussed. The text also highlights the impact of the use of the chassis dynamometer as a development platform and its impact on the development process. Examples of using chassis dynamometer as a development platform using Vehicle Hardware In-the-Loop (VHiL) approach including drivability assessment and transmission calibrations are presented.
Journal Article

Innovative Design of Tractor for Small and Marginal Farms Mechanisation

2015-01-14
2015-26-0072
Agriculture Tractors are widely used as prime mover either to pull or drive the “Implements” in the farms, apart from custom made equipments like Transplanter, Manure Spreader, Combine Harvester, Cotton Picker, mobile irrigation etc. which are used for particular operations in large production capacities. For larger landholdings, timely completion of the operation within the window period is the major decisive factor that drives agriculture tractor design. For small farms like in India, the productivity requirement was offset by the versatility of the equipment. Also, the farming practice varies in India due to geographical conditions such as soil types and demographic conditions such as crops types. Hence, the mechanisation level of matured market was not yet achieved in India, though the technologies are available for implementation.
Technical Paper

Multi Axis Fatigue Test of Lift Axle Assembly through Real Time Simulation Abstract

2021-09-22
2021-26-0486
This paper discusses the test setup and methodology required to validate complete lift axle assembly for simulating the real time test track data. The correlation of rig vs track is discussed. The approach for reduction of validation time by eliminating few of the non-damaging tracks/events, its correlation with real life condition is discussed, and details are presented. With increased competition, vehicle development time has reduced drastically in recent past. Bench test procedure using accelerated test cycle discussed in this paper will help to reduce development time and cost. Process briefed in this paper can also be used for similar test specification for other structural parts or complete suspension system of heavy commercial vehicles.
Technical Paper

Study on the Influence of Nonlinearity of Bushing and Air Spring Stiffness in Truck Suspension System on Joint Forces and Moments Calculation

2020-04-14
2020-01-1395
The joint forces and moments applied to the joints in an air suspension system in truck are important input loads for lightweight and fatigue analysis of bushings, air spring brackets, torque arms and trailing arms. In order to derive a reliable solution of joint forces and moments, engineers will generally use Multi Body Dynamics (MBD) simulation software, like ADAMS, which can save time in product development cycle. Taking an air suspension in truck as a study example, a 2-dimensional quasi-static model of an air suspension, whose stiffness of air spring and bushing is nonlinear, is established in ADAMS environment. After that, simulations are performed at the typical and extreme working condition respectively, and the results are compared with another three cases. Case I assumes that the stiffness of air spring is linear but the stiffness of bushings, including torsion and radial stiffness, are nonlinear.
Technical Paper

Influence of Asymmetrical Design Parameter on Vehicle Pull During Brake Application

2021-09-22
2021-26-0354
The steering system of commercial vehicle is asymmetrical to left side and rightside, this causes vehicle pull during braking application. This directly affects the safety of the driver and vehicle ride & handling performance. In a similar way, the asymmetrical suspension parameter unintentionally set during vehicle assembly arealso major contributors for creating a vehicle pull. After application of brake force, the tire contact patch creates a moment about the kingpin axis. However, this moment generated is different on left and right-side due to asymmetrical design parameters resulting in vehicle deviation from its intended path. A large deviation may lead to on road accidents. Some of the major factors which are responsible for the vehicle pulling phenomenon are the asymmetrical steering system compliance, asymmetrical suspension geometry, tire, braking system, road camber etc.
X