Refine Your Search



Search Results

Training / Education

A Primer on Regulations and Liability Considerations for HAV’s

Potential regulations surrounding the development, testing and commercial launch of Highly Automated Vehicles and possible liability exposure for the manufacturing and operation of Highly Automated Vehicles are fluid and changing areas, that will continue to evolve over the next several years. The first half of this course reviews where regulations are at the state and federal levels, what actions are currently under consideration, how current regulations will need to change to accommodate HAV’s, and how and when new regulations might be implemented. The second half covers both common law and strict liability and how it may apply to HAV’s.
Technical Paper

System Concept Effectiveness

Frequently, a choice between system concepts must be made on the basis of something other than a detailed evaluation of the design effectiveness of these systems. This paper develops a rudimentary analysis process for use in addressing this problem.
Technical Paper

Guiding Framework for Feasibility Evaluation of Localised Production and Drop in Blending of Aviation Turbine Fuel with Bio Derivatives for Non-civilian Air Bases

The potential for small scale local production of Bio fuel derivatives and their partial blending with aviation turbine fuel in non-civilian bases has been investigated. A feasibility study on technical readiness levels for process viability is presented in the paper. Demand side analysis for various blend mixes and corresponding requirement for production facilities and land area requirements are performed. Sustainable production and blending operations are the basis for selection of key performance indicators for the air base. Guiding framework and readiness evaluation processes are delineated for the base. Qualitative inference is combined with quantitative scoring system within the framework.
Technical Paper

Experimental Stress/Strain Analysis of a Standardized Sensor Platform for a C-130 Aircraft

Project Oculus is an in-flight deployable mechanical arm/pod system that will accommodate 500 pounds of sensor payload, developed for a C-130 military aircraft. The system is designed for use in counter narco-terrorism and surveillance applications by the Department of Defense and the National Guard [1]. A prototype of the system has been built and is in the testing/analysis phase. The purpose of this study was to analyze the actual stresses and strains in the critical areas found using previous Finite Element (FE) simulations and to ensure that acceptable safety requirements have been met. The system components tested will be redesigned, tested, and reconstructed in the case of unacceptable safety factors or if more reliable methods can be implemented. The system was built to be deployed and retracted in flight, to avoid causing any problems in take off and landing.
Technical Paper

A Military Space Plane Candidate

This paper presents a Military Space Plane design concept. While the current military space plane activity is focused on rocket-powered concepts, the concept presented here is powered by a rocket-based combined cycle engine that uses both rocket and air-breathing engine cycles. The design concept is the reference SSTO design concept used in the NASA HRST ANSER study. The reference concept is a derivative of the NASA air-breathing Access to Space study SSTO design concept. The Access to Space air-breathing vehicle's combined cycle engine was replaced by the Aerojet rocket-based combined cycle engine. The orbital performance capability of the reference design concept is presented for 100 n mi., polar, and 225 n mi., 51 deg. orbits. The sensitivity of GTOW to payload and margin is also presented.
Journal Article

Numerical Analysis of Blast Protection Improvement of an Armored Vehicle Cab by Composite Armors and Anti-Shock Seats

Abstract The objective of this article is to evaluate the effects of different blast protective modules to military vehicle structures and occupants. The dynamic responses of the V-shape integral basic armor, the add-on honeycomb sandwich structure module, and the anti-shock seat-dummy system were simulated and analyzed. The improvements of occupant survivability by different protective modules were compared using occupant injury criteria. The integral armored cab can maintain the integrity of the cab body structure. The add-on honeycomb sandwich armor reduces the peak structural deformation and velocity of the cab floor by 34.9% and 47.4%, respectively, compared with the cab with integral armors only. The integral armored cab with the anti-shock seat or the honeycomb sandwich structures reduces the occupant shock responses below the injury criteria. For different blast threat intensities, the selection of appropriate protective modules can meet protection requirements.

The Standard of Knowledge for the Aviation, Space & Defense Industry Quality Practitioner

This book provides a detailed description of the process-based body of knowledge (BoK) development methodology, and the expanded Quality BoK for the AS&D industry based on the work processes of the industry. The Standard of Knowledge for the Aviation, Space & Defense Industry Quality Practitioner: The AS&D Quality Body of Knowledge (BoK) Version 1 is based on applied research and peer-review validation of the actual quality-related business processes in the AS&D industry, this BoK provided the basis for ADLI professional certification of quality professionals. Essential to quality professionals, this new publication contains comprehensive business process knowledge, along with illustrations and tables to reinforce subjects.
Technical Paper

Enhanced HUD Symbology Associated with Recovery from Unusual Attitudes

The present study examined the degree of spatial awareness obtained using what has been called an Augie Arrow, enabled so that it could be displayed as either a “nearest horizon pointer” (NH) or an “up arrow” (UP) indicator. Another issue investigated concerned the usefulness of analog dials vice digital readouts of airspeed and altitude as an aid to recovery. During simulated flight, twelve subjects were required to recover from six unusual attitudes employing one of four HUD formats: (1) Standard HUD, (2) Augie Arrow, (3) Analog Dials, and (4) Augie Arrow with Analog Dials. Results revealed that the Augie Arrow produced the most rapid recovery time. The Augie Arrow configuration was optimal at the most severe unusual attitudes, especially for the NH mechanization. The Dials only HUD was not particularly helpful in recovery, and the Arrow with Dials HUD was rated as a significant clutter problem.
Technical Paper

Challenging Power Density Requirements for Future Fighter APUs

Future fighters will require more compact, lighter weight, small gas turbine auxiliary power units (APUs) capable of faster starting, and operation, up to altitudes of 50,000 ft. The US Air Force is currently supporting an Advanced Components Auxiliary Power Unit (ACAPU) research program to demonstrate the technologies that will be required to accomplish projected secondary power requirements for these advanced fighters. The requirements of the ACAPU Program represent a challenging task requiring significant technical advancements over the current state-of-the-art, prominent among which are: Small high heat release high altitude airbreathing combustors. High temperature monolithic ceramic and metallic small turbines. Capability to operate, and transition from non-airbreathing to airbreathing modes. This paper discusses these challenging requirements and establishes technology paths to match and exceed the required goals.
Technical Paper

Future Military APU Requirements

Future tactical aircraft will have increased capabilities that will place greater demands on their secondary power systems. Added capabilities such as low observability or internal weapons storage are being planned for without significantly increasing the aircraft's size and weight. The power system must therefore have reduced volume, weight, and complexity, while also being more reliable and maintainable. The auxiliary power unit (APU) is a critical component that must be improved to upgrade the capabilities of the power system. Increasing the APU's power density is one important way for reducing the power system's size and weight. Increased power density, however, will require a power unit operating with higher gas generator temperatures, so this condition will be the major challenge for new APU designs.

Automatic Target Recognition, Third Edition

This third edition of Automatic Target Recognition provides a roadmap for breakthrough ATR designs―with increased intelligence, performance, and autonomy. Clear distinctions are made between military problems and comparable commercial deep-learning problems. These considerations need to be understood by ATR engineers working in the defense industry as well as by their government customers. A reference design is provided for a next-generation ATR that can continuously learn from and adapt to its environment. The convergence of diverse forms of data on a single platform supports new capabilities and improved performance. This third edition broadens the notion of ATR to multisensor fusion. Radical continuous-learning ATR architectures, better integration of data sources, well-packaged sensors, and low-power teraflop chips will enable transformative military designs.

Perspectives on Integrating Structural Health Monitoring Systems into Fixed-Wing Military Aircraft

This SAE Aerospace Information Report (AIR) is prepared for stakeholders seeking information about the evolution, integration, and approval of SHM technologies for military aircraft systems. The report provides this information in the form of (a) two military organizations’ perspectives on requirements, and (b) general SHM challenges and industry perspectives. The report only provides information to generate awareness of perspectives for military aircraft and, hence, assists those who are involved in developing SHM systems understanding the broad range of regulations, requirements, and standards published by military organizations that are available in the public domain from the military organizations.

Military Tire Glossary

This glossary of tire military/industry terminology is a direct result of many months of planned and coordinated work by the SAE Military/Industry Tire Technology Nomenclature Task Force. This effort was put forth with the hope of leading the military and industry towards standardization of terminology. This glossary represents the latest state-of-the-art terms and definitions for military use. This SAE Recommended Practice shall remain open for comments from the reader and shall also be reviewed and updated periodically. Many similar terms and definitions were reviewed from shich the ones best applied to military use were selected. It is the purpose of this task force to provide technical definitions in present day use. Please do not hesitate to inform the task force of any improvements which may be required.

Lubricating Oil, Internal Combustion Engine, Military Combat/Tactical Service

This SAE Standard covers engine military oils suitable for lubrication of reciprocating internal combustion engines of both spark-ignition and compression-ignition types, and for power transmission fluid applications in combat/tactical service equipment (see 7.1). This document is equivalent to MIL-PRF-2104G when all requirements are met.
Technical Paper

Influence of the distances between the axles in the vertical dynamics of a military vehicle equipped with magnetorheological dampers

While traveling on any type of ground, the damper of a vehicle has the critical task of attenuating the vibrations generated by its irregularities, to promote safety, stability, and comfort to the occupants. To reach that goal, several passive dampers projects are optimized to embrace a bigger frequency range, but, by its limitations, many studies in semiactive and active dampers stands out by promoting better control of the vehicle dynamics behavior. In the case of military vehicles, which usually have more significant dimensions than the common ones and can run on rough or unpaved lands, the use of semi-active or active dampers reveals itself as a promising alternative. Motivated by that, the present study performs an analysis of the vertical dynamics of a wheeled military vehicle with four axles, using magnetorheological dampers. This study is made using a configuration of the distances between the axles of the vehicle, which is chosen from five available options.