Refine Your Search


Search Results

Training / Education

Introduction to Additive Manufacturing

Additive Manufacturing (AM) is a growing segment of advanced manufacturing, because it provides innovative solutions to traditional manufacturing suppliers of the aerospace, medical and automotive industries. Traditionally thought of as small volume and prototyping technology, additive manufacturing is an emerging technology that can be utilized to produce millions of parts per year. This course introduces the skills and knowledge necessary to understand the benefits of additive manufacturing, through hands on experiences with software and additive manufacturing machines.
Training / Education

Introduction to Airframe Engineering Design for Manufacturing, Assembly and Automation

Why is a design for manufacturing, assembly and automation so important? This introductory course on airframe engineering will cover the importance of design for manufacturing, assembly and automation in aerospace. It will review what the key drivers are for a “good” design and some of the key points for manufacturing and assembly of aircraft components. It will look at how an engineer can combine traditional technologies with new, cutting-edge technologies, to determine the best scenario for success.
Training / Education

AS13004 Process Failure Mode and Effects Analysis (PFMEA) and Control Plans

In the Aerospace Industry there is a growing focus on Defect Prevention to ensure that quality goals are met. Process Failure Mode & Effects Analysis (PFMEA) and Control Plan activities described in AS13004 are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Process Flow Diagrams, Process Failure Mode & Effects Analysis (PFMEA) and Control Plans as described in AS13004. It will show the links to other quality tools such as Design FMEA, Characteristics Matrix and Measurement Systems Analysis (MSA).
Training / Education

AS9145 Requirements for Advanced Product Quality Planning and Production Part Approval

Production and continual improvement of safe and reliable products is key in the aviation, space and defense industries. Customer and regulatory requirements must not only be met, but they are typically expected to exceeded requirements. Due to globalization, the supply chain of this industry has been expanded to countries which were not part of it in the past and has complicated the achievement of requirements compliance and customer satisfaction. The IAQG has established and deployed the AS9145 Standard, as a step to help achieve these objectives.
Training / Education

Ferrous Metals Bundle: Steel and Cast Iron

Ferrous metals contain iron and are prized for their tensile strength and durability.  Most are magnetic and contain a high carbon content which generally makes them, with the exception of wrought iron and stainless steel, vulnerable to rust. The following seven on-demand courses are included in the Ferrous Materials Bundle: Steel and Cast Iron.  Each course is approximately one-hour in duration. See Topics/Outline for additional details.
Training / Education

Metals Bundle

Almost 75% of all elements are metals. Metals can be classified as either ferrous or non-ferrous and generally conduct electricity and heat well. Most metals are malleable and ductile and are, in general, heavier than other elemental substances.The following six on-demand courses are included in the Materials bundle.  Each course is approximately one-hour in duration. See Topics/Outline for additional details.
Technical Paper

System Concept Effectiveness

Frequently, a choice between system concepts must be made on the basis of something other than a detailed evaluation of the design effectiveness of these systems. This paper develops a rudimentary analysis process for use in addressing this problem.
Technical Paper

Guiding Framework for Feasibility Evaluation of Localised Production and Drop in Blending of Aviation Turbine Fuel with Bio Derivatives for Non-civilian Air Bases

The potential for small scale local production of Bio fuel derivatives and their partial blending with aviation turbine fuel in non-civilian bases has been investigated. A feasibility study on technical readiness levels for process viability is presented in the paper. Demand side analysis for various blend mixes and corresponding requirement for production facilities and land area requirements are performed. Sustainable production and blending operations are the basis for selection of key performance indicators for the air base. Guiding framework and readiness evaluation processes are delineated for the base. Qualitative inference is combined with quantitative scoring system within the framework.
Technical Paper

Experimental Stress/Strain Analysis of a Standardized Sensor Platform for a C-130 Aircraft

Project Oculus is an in-flight deployable mechanical arm/pod system that will accommodate 500 pounds of sensor payload, developed for a C-130 military aircraft. The system is designed for use in counter narco-terrorism and surveillance applications by the Department of Defense and the National Guard [1]. A prototype of the system has been built and is in the testing/analysis phase. The purpose of this study was to analyze the actual stresses and strains in the critical areas found using previous Finite Element (FE) simulations and to ensure that acceptable safety requirements have been met. The system components tested will be redesigned, tested, and reconstructed in the case of unacceptable safety factors or if more reliable methods can be implemented. The system was built to be deployed and retracted in flight, to avoid causing any problems in take off and landing.
Technical Paper

A Military Space Plane Candidate

This paper presents a Military Space Plane design concept. While the current military space plane activity is focused on rocket-powered concepts, the concept presented here is powered by a rocket-based combined cycle engine that uses both rocket and air-breathing engine cycles. The design concept is the reference SSTO design concept used in the NASA HRST ANSER study. The reference concept is a derivative of the NASA air-breathing Access to Space study SSTO design concept. The Access to Space air-breathing vehicle's combined cycle engine was replaced by the Aerojet rocket-based combined cycle engine. The orbital performance capability of the reference design concept is presented for 100 n mi., polar, and 225 n mi., 51 deg. orbits. The sensitivity of GTOW to payload and margin is also presented.

The Standard of Knowledge for the Aviation, Space & Defense Industry Quality Practitioner

This book provides a detailed description of the process-based body of knowledge (BoK) development methodology, and the expanded Quality BoK for the AS&D industry based on the work processes of the industry. The Standard of Knowledge for the Aviation, Space & Defense Industry Quality Practitioner: The AS&D Quality Body of Knowledge (BoK) Version 1 is based on applied research and peer-review validation of the actual quality-related business processes in the AS&D industry, this BoK provided the basis for ADLI professional certification of quality professionals. Essential to quality professionals, this new publication contains comprehensive business process knowledge, along with illustrations and tables to reinforce subjects.
Technical Paper

Enhanced HUD Symbology Associated with Recovery from Unusual Attitudes

The present study examined the degree of spatial awareness obtained using what has been called an Augie Arrow, enabled so that it could be displayed as either a “nearest horizon pointer” (NH) or an “up arrow” (UP) indicator. Another issue investigated concerned the usefulness of analog dials vice digital readouts of airspeed and altitude as an aid to recovery. During simulated flight, twelve subjects were required to recover from six unusual attitudes employing one of four HUD formats: (1) Standard HUD, (2) Augie Arrow, (3) Analog Dials, and (4) Augie Arrow with Analog Dials. Results revealed that the Augie Arrow produced the most rapid recovery time. The Augie Arrow configuration was optimal at the most severe unusual attitudes, especially for the NH mechanization. The Dials only HUD was not particularly helpful in recovery, and the Arrow with Dials HUD was rated as a significant clutter problem.
Technical Paper

Challenging Power Density Requirements for Future Fighter APUs

Future fighters will require more compact, lighter weight, small gas turbine auxiliary power units (APUs) capable of faster starting, and operation, up to altitudes of 50,000 ft. The US Air Force is currently supporting an Advanced Components Auxiliary Power Unit (ACAPU) research program to demonstrate the technologies that will be required to accomplish projected secondary power requirements for these advanced fighters. The requirements of the ACAPU Program represent a challenging task requiring significant technical advancements over the current state-of-the-art, prominent among which are: Small high heat release high altitude airbreathing combustors. High temperature monolithic ceramic and metallic small turbines. Capability to operate, and transition from non-airbreathing to airbreathing modes. This paper discusses these challenging requirements and establishes technology paths to match and exceed the required goals.
Technical Paper

Future Military APU Requirements

Future tactical aircraft will have increased capabilities that will place greater demands on their secondary power systems. Added capabilities such as low observability or internal weapons storage are being planned for without significantly increasing the aircraft's size and weight. The power system must therefore have reduced volume, weight, and complexity, while also being more reliable and maintainable. The auxiliary power unit (APU) is a critical component that must be improved to upgrade the capabilities of the power system. Increasing the APU's power density is one important way for reducing the power system's size and weight. Increased power density, however, will require a power unit operating with higher gas generator temperatures, so this condition will be the major challenge for new APU designs.

Perspectives on Integrating Structural Health Monitoring Systems into Fixed-Wing Military Aircraft

This SAE Aerospace Information Report (AIR) is prepared for stakeholders seeking information about the evolution, integration, and approval of SHM technologies for military aircraft systems. The report provides this information in the form of (a) two military organizations’ perspectives on requirements, and (b) general SHM challenges and industry perspectives. The report only provides information to generate awareness of perspectives for military aircraft and, hence, assists those who are involved in developing SHM systems understanding the broad range of regulations, requirements, and standards published by military organizations that are available in the public domain from the military organizations.

Coolant Hose - Normal Service Type Convoluted, Wire Support Hose (Supplement to SAE J20 for Government Use Replacing Part of MS51008)

This SAE Standard provides ordering information for any SAE 20R5 hose type (such as “EC, HT, LT” or combination thereof.) This is a wire-reinforced hose for coolant circulating systems of automotive type engines. This hose consists of a convoluted section with plain ends. The hose shall contain a wire helix or helices in the convoluted section. It is a supplement for Government use but may be used by others.

Emergency Warning Device and Emergency Warning Device Protective Container

This SAE Standard provides test procedures and performance requirements for emergency warning devices (triangular shape), without self-contained energy sources, that are designed to be carried in motor vehicles and used to warn approaching traffic of the presence of a stopped vehicle, except for devices designed to be permanently affixed to the vehicle, and provides test procedures and performance requirements for protective containers for such emergency warning devices.
Technical Paper

Multi-Layer Framework for Synthesis and Evaluation of Heterogeneous System-of-Systems Composed of Manned and Unmanned Vehicles

The advancement of both sensory and unmanned technology, combined with increased utilization of autonomous platforms in complex teaming scenarios, has created a need for practical design space exploration tools to aid in the synthesis of effective System-of-Systems (SoS). The presented work describes a modular, flexible, and extensible framework, referred to herein as the Technologies and Teaming Evaluation (TATE) framework, for straightforward identification of high-quality SoS, which may include both manned and autonomous elements, through quantitative evaluation of system-level and SoS-level attributes against a set of user-defined reference tasks.