Refine Your Search

Topic

Search Results

Training / Education

Fluids for Aerospace Hydraulic Systems

This four-hour short course provides an introduction to fluids for aerospace hydraulic systems. Topics covered include an introduction to basics fluid properties, rheology, tribology, and fluid product development. In addition, the history and performance of different classes of fluids are discussed in detail, and specific failure modes such as erosion and sludge formation will be described. Along with an introduction to fluid degradation, information on used oil analysis test methods and interpretation will be provided.
Training / Education

AS13100 and RM13004 Design and Process Failure Mode and Effects Analysis and Control Plans

2024-07-03
This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. In the Aerospace Industry there is a focus on Defect Prevention to ensure that quality goals are met. Failure Mode and Effects Analysis (PFMEA) and Control Plan activities are recognized as being one of the most effective, on the journey to Zero Defects. This two-day course is designed to explain the core tools of Design Failure Mode and Effects Analysis (DFMEA), Process Flow Diagrams, Process Failure Mode and Effects Analysis (PFMEA) and Control Plans as described in AS13100 and RM13004.
Technical Paper

Comparison and Evaluation of Performance, Combustion and Particle Emissions of Diesel and Gasoline in a Military Heavy Duty 720 kW CIDI Engine Applying EGR

2020-09-15
2020-01-2057
Investigating the impact of Gasoline fuel on diesel engine performance and emission is very important for military heavy- duty combat vehicles. Gasoline has great potential as alternative fuel due to rapid depletion of petroleum reserves and stringent emission legislations, under multi fuel strategy program for military heavy- duty combat vehicle. There is a known torque, horsepower and fuel economy penalty associated with the operation of a diesel engine with Gasoline fuel. On the other hand, experimental studies have suggested that Gasoline fuel has the potential for lowering exhaust emissions, especially NOx, CO, CO2, HC and particulate matter as compared to diesel fuel. Recent emission legislations also restrict the total number of nano particles emitted in addition to particulate matter, which has adverse health impact.
Technical Paper

Methodology and Results of Testing an Impact of F-34 Fuel on the Engine Reliability

2020-09-15
2020-01-2133
An application of the new kind of the fuel for the diesel engine requires to conduct the qualification tests of the engines powered by this his fuel which allow assessing an impact of fuel on the engine reliability. Such a qualification test of the piston and turbine engines of the aircraft stationed on the ground and land vehicles is described in the NATO standardisation agreement (STANAG) 4195 as the AEP-5 test. The methodology and selected results of the qualification tests of the SW-680 turbocharged multi-purpose diesel engine fuelled with F-34 fuel have been presented in this paper. A dynamometric stand with the SW-680 engine has been described. Based on the preliminary results of the investigation it has been found that a change in a type of the fuel from IZ-40 diesel fuel into F-34 kerosene-type one has reduced a maximum engine torque by about 4%. This has been primarily due to a lower fuel density of F-34 by about 3%.
Standard

Aerospace Ground Equipment Criteria for a Propellant Transfer Unit

1999-01-01
CURRENT
AIR1129
The primary purpose of a Propellant Transfer Unit (PTU) is to temperature-condition and weigh a specific amount of propellant, and transfer if to a vehicle propellant tank. A secondary purpose of a PTU may be to drain propellant from the vehicle tank and return it to the transfer unit when required. The transfer unit may also be used for flushing the vehicle fill lines and transfer unit with appropriate flushing fluids, followed with nitrogen for the purpose of drying the lines and weigh tank. The transfer unit may include provisions for helium purging of the propellant transfer tank and lines, ad supplying a blanket of helium pressure to the transfer tank. Each PTU consists of a piping system with appropriate propellant and pneumatic valves, regulators, relief valves, filters and a propellant pump. Various components such as a scrubber, bubbler, propellant cooler (heat exchanger), propellant weigh tank, weigh scale and a chiller may make up the balance of the assembly.
Training / Education

New Mechanical Shifting Devices in Automotive Transmissions Web Seminar RePlay

Anytime
The Controllable Mechanical DiodeTM (CMD) is a new technology that improves fuel economy, mass and packaging in modern automatic transmissions. In this 40-minute course, participants will gain an understanding of the base construction, function and value of the new Controllable Mechanical DiodeTM innovation. Advantages of its use in new automatic transmissions will be explained along with examples of the CMD’s alignment to electrified transmissions.
Technical Paper

Challenging Power Density Requirements for Future Fighter APUs

1991-09-01
912177
Future fighters will require more compact, lighter weight, small gas turbine auxiliary power units (APUs) capable of faster starting, and operation, up to altitudes of 50,000 ft. The US Air Force is currently supporting an Advanced Components Auxiliary Power Unit (ACAPU) research program to demonstrate the technologies that will be required to accomplish projected secondary power requirements for these advanced fighters. The requirements of the ACAPU Program represent a challenging task requiring significant technical advancements over the current state-of-the-art, prominent among which are: Small high heat release high altitude airbreathing combustors. High temperature monolithic ceramic and metallic small turbines. Capability to operate, and transition from non-airbreathing to airbreathing modes. This paper discusses these challenging requirements and establishes technology paths to match and exceed the required goals.
Technical Paper

Future Military APU Requirements

1991-09-01
912176
Future tactical aircraft will have increased capabilities that will place greater demands on their secondary power systems. Added capabilities such as low observability or internal weapons storage are being planned for without significantly increasing the aircraft's size and weight. The power system must therefore have reduced volume, weight, and complexity, while also being more reliable and maintainable. The auxiliary power unit (APU) is a critical component that must be improved to upgrade the capabilities of the power system. Increasing the APU's power density is one important way for reducing the power system's size and weight. Increased power density, however, will require a power unit operating with higher gas generator temperatures, so this condition will be the major challenge for new APU designs.
Technical Paper

Computing Remaining Fatigue Life Under Incrementally Updated Loading Histories

2018-04-03
2018-01-0623
After manufacture, every military vehicle experiences a unique history of dynamic loads, depending on loads carried, missions completed, etc. Damage accumulates in vehicle structures and components accordingly, leading eventually to failures that can be difficult to anticipate, and to unpredictable consequences for mission objectives. The advent of simulation-based fatigue life prediction tools opens a path to Digital Twin based solutions for tracking damage, and for gaining control over vehicle reliability. An incremental damage updating feature has now been implemented in the Endurica CL fatigue solver with the aim of supporting such applications for elastomer components. The incremental updating feature is demonstrated via the example of a simple transmission mount component. The damage state of the mount is computed as it progresses towards failure under a series of typical loading histories.
Technical Paper

Influence of the distances between the axles in the vertical dynamics of a military vehicle equipped with magnetorheological dampers

2018-09-03
2018-36-0232
While traveling on any type of ground, the damper of a vehicle has the critical task of attenuating the vibrations generated by its irregularities, to promote safety, stability, and comfort to the occupants. To reach that goal, several passive dampers projects are optimized to embrace a bigger frequency range, but, by its limitations, many studies in semiactive and active dampers stands out by promoting better control of the vehicle dynamics behavior. In the case of military vehicles, which usually have more significant dimensions than the common ones and can run on rough or unpaved lands, the use of semi-active or active dampers reveals itself as a promising alternative. Motivated by that, the present study performs an analysis of the vertical dynamics of a wheeled military vehicle with four axles, using magnetorheological dampers. This study is made using a configuration of the distances between the axles of the vehicle, which is chosen from five available options.
Technical Paper

On Simulating Sloshing in Vehicle Dynamics

2018-04-03
2018-01-1110
We present an approach in which we use simulation to capture the two-way coupling between the dynamics of a vehicle and that of a fluid that sloshes in a tank attached to the vehicle. The simulation is carried out in and builds on support provided by two modules: Chrono::FSI (Fluid-Solid Interaction) and Chrono::Vehicle. The dynamics of the fluid phase is governed by the mass and momentum (Navier-Stokes) equations, which are discretized in space via a Lagrangian approach called Smoothed Particle Hydrodynamics. The vehicle dynamics is the solution of a set of differential algebraic equations of motion. All equations are discretized in time via a half-implicit symplectic Euler method. This solution approach is general - it allows for fully three dimensional (3D) motion and nonlinear transients. We demonstrate the solution in conjunction with the simulation of a vehicle model that performs a constant radius turn and double lane change maneuver.
Technical Paper

Design and Development of Fuel Tank for High Mobility Military Vehicle

2023-05-25
2023-28-1342
Fuel tank is considered as safety component in the vehicle, and it has to be tested to meet the safety requirements as per AIS 095. Earlier, fuel tanks were manufactured by using Hot dipped cold rolled steel material and the weld zones are applied with Anti-corrosive coating. Few fuel tanks were reported with Corrosion problems. The root cause analysis was carried out considering the raw material, manufacturing process, transpiration, storage and usage. As an improvement, the new fuel tank is designed to eliminate the limitations of the existing fuel tank. 3D modeling was done to check space and mounting requirement in the layout and used for volume calculations. FE analysis was performed to check structural stability. Emphasis given on Interchange-ability to cater the new fuel tanks in place of old as spares requirement. The fuel tank has developed with Alumina steel material.
Standard

A Guide to APU Health Management

2023-09-15
CURRENT
AIR5317A
AIR5317 establishes the foundation for developing a successful APU health management capability for any commercial or military operator, flying fixed wing aircraft or rotorcraft. This AIR provides guidance for demonstrating business value through improved dispatch reliability, fewer service interruptions, and lower maintenance costs and for satisfying Extended Operations (ETOPS) availability and compliance requirements.
Standard

Reliability, Maintainability, and Sustainability Terms and Definitions

2020-04-21
CURRENT
J3119_202004
A glossary of basic terms and definitions useful for working in reliability, maintainability, and sustainability (RMS). The terms used in most engineering technologies tend to be physical characteristics such as speed, rate of turn, and fuel consumption. While they may require very careful definition and control of the way in which they are measured, the terms themselves are not subject to different interpretations. Reliability, maintainability, and sustainability (RMS), however, use terms that are defined in a variety of ways with multiple interpretations. The variety of definitions given to a single term creates problems when trying to compare the performance of one system to another. To eliminate the confusion, a literature search that listed current and past RMS terms and definitions was conducted. The literature search included input from the U.S. military, UK military, NATO, SAE, IEEE, NASA, ISO, university research, and other publications.
Standard

Coolant Hose - Normal Service Type Convoluted, Wire Support Hose (Supplement to SAE J20 for Government Use Replacing Part of MS51008)

2018-03-04
CURRENT
J20/2_201803
This SAE Standard provides ordering information for any SAE 20R5 hose type (such as “EC, HT, LT” or combination thereof.) This is a wire-reinforced hose for coolant circulating systems of automotive type engines. This hose consists of a convoluted section with plain ends. The hose shall contain a wire helix or helices in the convoluted section. It is a supplement for Government use but may be used by others.
Journal Article

Infrared Signature of Fixed and Variable Area C-D Nozzle of Aircraft Engine

2023-01-02
Abstract The use of converging-diverging (C-D) variable area nozzle (VAN) in military aeroengines is now common, as it can give optimal expansion and control over engine back pressure, for a wide range of engine operations. At higher main combustion temperatures (desired for supercruise), an increase in the nozzle expansion ratio is needed for optimum performance. But changes in the nozzle throat and exit areas affect the visibility of engine hot parts as the diverging section of the nozzle is visible for a full range of view angle from the rear aspect. The solid angle subtended by engine hot parts varies with change in visibility, which affects the aircraft infrared (IR) signature from the rear aspect. This study compares the performances of fixed and variable area nozzles (FAN and VAN) in terms of engine thrust and IR signature of the engine exhaust system in the boresight for the same increase in combustion temperature.
X