Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Journal Article

Effects of Reflux Temperature and Molarity of Acidic Solution on Chemical Functionalization of Helical Carbon Nanotubes

2017-09-19
Abstract The use of nanomaterials and nanostructures have been revolutionizing the advancements of science and technology in various engineering and medical fields. As an example, Carbon Nanotubes (CNTs) have been extensively used for the improvement of mechanical, thermal, electrical, magnetic, and deteriorative properties of traditional composite materials for applications in high-performance structures. The exceptional materials properties of CNTs (i.e., mechanical, magnetic, thermal, and electrical) have introduced them as promising candidates for reinforcement of traditional composites. Most structural configurations of CNTs provide superior material properties; however, their geometrical shapes can deliver different features and characteristics. As one of the unique geometrical configurations, helical CNTs have a great potential for improvement of mechanical, thermal, and electrical properties of polymeric resin composites.
Journal Article

Optimization of Pneumatic Network Actuators with Isosceles Trapezoidal Chambers

2019-10-04
Abstract Soft actuators with pneumatic network have innovative potential applications in medical and rehabilitation areas. The performance of this kind of actuators is determined by the design of chambers and the properties of the active extensible layer and the passive inextensible layer. In this article, actuator with isosceles trapezoidal chambers is proposed. Orthogonal experiment design and finite element method are used to optimize the structure of actuators. Results indicate that adding constrain-limiting paper in the passive layer can significantly reduce the bending radius. Position of the paper in the passive layer also affects the bending radius. Actuators with trapezoidal chambers can have a smaller bending radius compared with that with rectangle chambers. The bending radius decreases as the ratio of short base to long base of trapezoid decreases. Increasing the number density of chambers can further reduce the bending radius.
Technical Paper

Medical Cargo Delivery using Blockchain Enabled Unmanned Aircraft Systems

2022-05-26
2022-26-0003
Significant growth of Unmanned Aerial Vehicles (UAV) has unlocked many services and applications opportunities in the healthcare sector. Aerial transportation of medical cargo delivery can be an effective and alternative way to ground-based transport systems in times of emergency. To improve the security and the trust of such aerial transportation systems, Blockchain can be used as a potential technology to manage, operate and monitor the entire process. In this paper, we present a blockchain network solution based on Ethereum for the transportation of medical cargo such as blood, medicines, vaccines, etc. The smart contract solution developed in solidity language was tested using the Truffle program. Ganache blockchain test network was employed to host the blockchain network and test the operation of the proposed blockchain model. The suitability of the model is validated in real-time using a UAV and all the flight data are captured and uploaded into the blockchain.
Technical Paper

MVMDNet: A Weakly-Supervised Multi-View Enhancing Network for Mass Detection in Mammograms

2022-06-28
2022-01-7030
Mass is one important suspicious object for breast cancer diagnosis in mammograms. Computer-aided detection (CAD) based on fully supervised deep learning achieves high performance for mass detection in mammograms. The lack of fine-grained expert labels becomes the bottleneck for the large-scale application of CAD to achieve detection in mammograms. Weakly supervised methods provide a solution to tackle the annotation problems, including in the application for mass detection. However, previous works face the problem of insufficient localization information, which affect the ability of mass detection. In this paper, we propose a multi-view enhancing mass detection network (MVMDNet) with dual view inputs that contains craniocaudal (CC) and mediolateral oblique (MLO) view of mammograms, where different view features are interacted and fused to enhance localization information.
Technical Paper

Human Foot-Ankle Injuries and Associated Risk Curves from Under Body Blast Loading Conditions

2017-11-13
2017-22-0006
Under body blast (UBB) loading to military transport vehicles is known to cause foot-ankle fractures to occupants due to energy transfer from the vehicle floor to the feet of the soldier. The soldier posture, the proximity of the event with respect to the soldier, the personal protective equipment (PPE) and age/sex of the soldier are some variables that can influence injury severity and injury patterns. Recently conducted experiments to simulate the loading environment to the human foot/ankle in UBB events (~5ms rise time) with variables such as posture, age and PPE were used for the current study. The objective of this study was to determine statistically if these variables affected the primary injury predictors, and develop injury risk curves. Fifty below-knee post mortem human surrogate (PMHS) legs were used for statistical analysis. Injuries to specimens involved isolated and multiple fractures of varying severity.
Journal Article

A Novel Cloud-Based Additive Manufacturing Technique for Semiconductor Chip Casings

2022-08-02
Abstract The demand for contactless, rapid manufacturing has increased over the years, especially during the COVID-19 pandemic. Additive manufacturing (AM), a type of rapid manufacturing, is a computer-based system that precisely manufactures products. It proves to be a faster, cheaper, and more efficient production system when integrated with cloud-based manufacturing (CBM). Similarly, the need for semiconductors has grown exponentially over the last five years. Several companies could not keep up with the increasing demand for many reasons. One of the main reasons is the lack of a workforce due to the COVID-19 protocols. This article proposes a novel technique to manufacture semiconductor chips in a fast-paced manner. An algorithm is integrated with cloud, machine vision, sensors, and email access to monitor with live feedback and correct the manufacturing in case of an anomaly.
Journal Article

Investigation of Hot Corrosion Behavior on QE22A-Magnesium Silver Alloy through Steaming Method

2022-03-03
Abstract The hot corrosion studies for the die-casted magnesium (Mg) silver (Ag) alloys are carried out through the steam heating route. The Magnesium Silver (QE22A) alloy is fixed under the top lid of the pressure cooker (2 liters) and filled with water and 5% salt (NaCl) solution. The specimens are treated with different time intervals (10, 20, and 30 minutes), with the steam temperature maintained at 100°C around the specimen. The results showed an increase in the corrosion rate with the increase in the steaming time. Further, after the specimens have cooled down to room temperature, similar experiments are repeated for the second and third cycles. Here the formation of the oxide layers over the specimen has reduced the corrosion rate. The structural, surface study was carried out through scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive spectroscopy (EDS) to know the corrosion behavior on the specimen.
Research Report

The Use of eVTOL Aircraft for First Responder, Police, and Medical Transport Applications

2023-09-26
EPR2023020
Advancements in electric vertical takeoff and landing (eVTOL) aircraft have generated significant interest within and beyond the traditional aviation industry. One particularly promising application involves on-demand, rapid-response use cases to broaden first responders, police, and medical transport mission capabilities. With the dynamic and varying public service operations, eVTOL aircraft can offer potentially cost-effective aerial mobility components to the overall solution, including significant lifesaving benefits.
Book

Power Harvesting via Smart Materials

2017-01-01
This monograph covers the fundamentals, fabrication, testing, and modeling of ambient energy harvesters based on three main streams of energy-harvesting mechanisms: piezoelectrics, ferroelectrics, and pyroelectrics. It addresses their commercial and biomedical applications, as well as the latest research results. Graduate students, scientists, engineers, researchers, and those new to the field will find this book a handy and crucial reference because it provides a comprehensive perspective on the basic concepts and recent developments in this rapidly expanding field.
Magazine

Tech Briefs: April 2018

2018-04-01
Laser Detecting Systems Enhancing Survivability and Lethality on the Battlefield Designing With Plastics for Military Equipment Engine Air-Brakes Paving the Way to Quieter Aircraft Nett Warrior Enhancing Battlefield Connectivity and Communications XPONENTIAL 2018 - An AUVSI Experience Communications in Space: A Deep Subject First Air-Worthy Metal-Printed RF Filter Ready for Takeoff Validation of Automated Prediction of Blood Product Needs Algorithm Processing Continuous Non-Invasive Vital Signs Streams (ONPOINT4) Using a combination of non-invasive sensors, advanced algorithms, and instruments built for combat medics could reduce hemorrhaging and improve survival rates. Calculation of Weapon Platform Attitude and Cant Using Available Sensor Feedback Successful development of mobile weapon systems must incorporate operation on sloped terrain.
X