Refine Your Search

Topic

Search Results

Training / Education

Fundamentals of GD&T ASME Y14.5 - 2009 Advanced Level

This 3-day Fundamentals of GD&T course provides an in-depth study of the terms, rules, symbols, and concepts of geometric dimensioning and tolerancing, as prescribed in the ASME Y14.5-2009 Standard. The course can be conducted in three 8-hour sessions or with flexible scheduling including five mornings or five afternoons. 
Training / Education

Fundamentals of GD&T for Inspectors - Foundational Level

This 2-day foundational-level course builds on geometric dimensioning and tolerancing fundamentals and teaches an introduction of how to inspect GD&T requirements.  The course offers an explanation of the geometric symbols, rules, and concepts, the datum system, and how to inspect GD&T requirements using tools from the four categories of inspection tools (CMM; comparison instruments and fixed gages; hand tools and open set up; and production gaging systems).
Training / Education

Applications of GD&T ASME 14.5 - 1994 & 2009 Foundational Level

This course teaches the thought processes involved in assigning GD&T to components, and it changes the way many engineers think about part tolerancing. The course focuses on what constitutes good and poor drawing practices, common dimensioning methods used in industry, using GD&T to communicate system functions on component dimensions, and the logic of how to apply GD&T to components. You’ll also learn how to select datum features and how to fully define component surfaces using GD&T. Establishing tolerance values is not covered.   
Training / Education

Fundamentals of GD&T ASME Y14.5M 1994 - Advanced Level

This 3-day advanced-level Fundamentals of GD&T course is an in-depth study of the terms, rules, symbols, and concepts of geometric dimensioning and tolerancing as prescribed in the ASME Y14.5M-1994 Standard. The course can be conducted in three 8-hour sessions or with flexible scheduling including five mornings or five afternoons.  This class includes all the content from the Fundamentals of GD&T 2-day foundational course: an explanation of geometric symbols, including each symbol’s requirements, tolerance zones, and limitations.
Training / Education

Critical Concepts of Tolerance Stacks ASME Y14.5 1994, 2009, 2018 - Advanced Level

Using tolerance stacks ensures that parts fit together properly, reducing scrap and rework, thereby increasing value. This 3-day advanced-level course includes everything covered in the 2-day foundational-level course. It explains how to use tolerance stacks to analyze product designs and how to use geometric tolerances in stacks.
Training / Education

Aviation Parts to Medical Devices Bridging the Gap

This course is verified by Probitas Authentication as meeting the AS9104/3A requirements for continuing Professional Development. This one-day program is designed to provide introductory information for those organizations who are considering transitioning from the Aeronautic, Space and Defense industry to the Food & Drug Administration (FDA), Medical Device Manufacturing market. Reviewing essential information necessary to understand and successfully begin the journey to FDA Medical Device approval, this course will examine many of the controls between the AS9100 Standard and FDA Regulations and identify the similarities.
Training / Education

Quality Function Deployment Transforming Voice of the Customer into Engineering Specifications

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). Currently in the industry, especially within China, product requirement development is more of an experience-based process rather than a scientific methodology. This course addresses this issue and provides a more process-driven method for better requirement development through the Quality Function Deployment (QFD) methodology.  Real industrial examples are used to demonstrate how to systematically convert the voice of the customer data to engineering specifications using QFD.
Training / Education

Model-Based Systems Engineering (MBSE)

This course is offered in China only and presented in Mandarin Chinese. The course materials are bilingual (English and Chinese). As the complexity of products increases, traditional text-based systems engineering can no longer meet the needs. To solve the problem, Model-based Systems Engineering offers a unified communication platform among relevant staff by carrying out diagram-based unambiguous description, analysis and design for the demand, and structure and behavior of complex systems in the form of a model.
Training / Education

MBSE Design and Development

In today's complex engineering landscape, effective systems engineering is essential for ensuring the success of projects across various industries. The MBSE Design and Development training course offers a comprehensive exploration of Model-Based Systems Engineering (MBSE) principles and practices, providing participants with the technical knowledge and practical skills needed to excel in modern systems engineering. This course serves as a bridge from traditional systems engineering approaches to contemporary systems modeling methodologies.
Training / Education

Model-Based Engineering Overview for Systems Management Practitioners

Use of Model-Based Systems Engineering (MBSE) has been growing across industry, extending beyond defense and aerospace to include various commercial enterprises such as automotive and healthcare. Tool vendors are quick to point out benefits of this model-based approach and practices but are not always clear how MBSE benefits can be realized on a project. When deployed successfully, several key considerations should be addressed that maximize the value for a use-case. This four-hour class will discuss the nature and purpose of the MBSE approach and how key information is used for successful MBSE deployment as it relates to Systems Management.
Training / Education

Advanced Concepts of GD&T ASME Y14.5 2009 - Foundational Level

This two-day foundational-level course teaches Advanced Concepts of GD&T as prescribed in the ASME Y14.5-2009 Standard. It offers an explanation of complex GD&T topics, such as the expanded use of composite position and profile tolerances, customized datum reference frames, the translation modifier, and applying GD&T to non-rigid parts. You’ll learn about functional dimensioning, form controls, the datum system, additional and complex datum feature types, expanded datum target concepts and usage on restrained parts, simultaneous, and separate requirements.
Training / Education

GD&T Review and Application

Led by our senior GD&T professionals with a wide variety of industry background and experience, this one-day GD&T Review and Application course is designed for organizations who have participated in training through SAE but are looking for further clarification on how to apply GD&T best practices to specific organizational drawings. Designed to assist your design teams with highly complex design analysis problems and to support your teams through real world drawing examples, the instructor will review, answer questions, and provide feedback on tolerance analysis and GD&T implementation.
Training / Education

Optimizing Systems Design Engineering

2024-05-17
This full-day course is designed to equip engineering professionals with the knowledge and tools needed to combine the strengths of Design Engineering and Systems Engineering into Systems Design Engineering (SDE) principles. These principles will improve engineering efficiency and practically design more sustainable system-level products, all while strategically aligning with digital transformation objectives.
Training / Education

Engineering Project Management

2024-05-14
This course is verified by Probitas as meeting the AS9104/3A requirements for Continuing Professional Development. Project Management and Advanced Product Quality Planning (APQP) are two critical techniques used in product development in the mobility industry today. This course will bring these techniques together in an easy to understand format that goes beyond the typical concept of constructing timelines and project planning, by exploring not only the Automotive APQP process, but also key aspects of PM processes.
Technical Paper

Medical Cargo Delivery using Blockchain Enabled Unmanned Aircraft Systems

2022-05-26
2022-26-0003
Significant growth of Unmanned Aerial Vehicles (UAV) has unlocked many services and applications opportunities in the healthcare sector. Aerial transportation of medical cargo delivery can be an effective and alternative way to ground-based transport systems in times of emergency. To improve the security and the trust of such aerial transportation systems, Blockchain can be used as a potential technology to manage, operate and monitor the entire process. In this paper, we present a blockchain network solution based on Ethereum for the transportation of medical cargo such as blood, medicines, vaccines, etc. The smart contract solution developed in solidity language was tested using the Truffle program. Ganache blockchain test network was employed to host the blockchain network and test the operation of the proposed blockchain model. The suitability of the model is validated in real-time using a UAV and all the flight data are captured and uploaded into the blockchain.
Technical Paper

Development and Calibration of the Large Omnidirectional Child ATD Head Finite Element Model

2021-04-06
2021-01-0922
To improve the biofidelity of the currently available Hybrid III 10-year-old (HIII-10C) Anthropomorphic Test Device (ATD), the National Highway Traffic Safety Administration (NHTSA) has developed the Large Omnidirectional Child (LODC) ATD. The LODC head is a redesigned HIII-10C head with mass properties and modified skin material required to match pediatric biomechanical impact response targets from the literature. A dynamic, nonlinear finite element (FE) model of the LODC head has been developed using the mesh generating tool Hypermesh based on the three-dimensional CAD model. The material data, contact definitions, and initial conditions are defined in LS-PrePost and converted to LS-Dyna solver input format. The aluminum head skull is stiff relative to head flesh material and was thus modeled as a rigid material. For the actual LODC, the head flesh is form fit onto the skull and held in place through contact friction.
Research Report

Unsettled Topics on Nondestructive Testing of Additively Manufactured Parts in the Mobility Industry

2020-09-29
EPR2020017
Additive manufacturing (AM) technology, also known as 3D printing, has transitioned from concepts and prototypes to part-for-part substitution and the creation of unique AM-specific part geometries. These applications are increasingly present in demanding, mission-critical fields such as medicine and aerospace, which require materials with certain thermal, stiffness, corrosion, and static loading properties. To advance in these arenas, metallic, ceramic, and polymer composite AM parts need to be free from discontinuities. The manufacturing processes have to be stable, robust, and repeatable. And the nondestructive testing (NDT) technology and inspection methods will need to be sufficiently capable and reliable to ensure that discontinuities will be detected to prevent the components from being accepted for use. As the second installment of a six-part series of SAE EDGE™ Research Reports on AM, this one discusses the need, challenges, technologies, and opportunities for NDT in AM.
Journal Article

A Novel Cloud-Based Additive Manufacturing Technique for Semiconductor Chip Casings

2022-08-02
Abstract The demand for contactless, rapid manufacturing has increased over the years, especially during the COVID-19 pandemic. Additive manufacturing (AM), a type of rapid manufacturing, is a computer-based system that precisely manufactures products. It proves to be a faster, cheaper, and more efficient production system when integrated with cloud-based manufacturing (CBM). Similarly, the need for semiconductors has grown exponentially over the last five years. Several companies could not keep up with the increasing demand for many reasons. One of the main reasons is the lack of a workforce due to the COVID-19 protocols. This article proposes a novel technique to manufacture semiconductor chips in a fast-paced manner. An algorithm is integrated with cloud, machine vision, sensors, and email access to monitor with live feedback and correct the manufacturing in case of an anomaly.
X