Refine Your Search




Search Results

Training / Education

Introduction to Commercial and Off-Road Vehicle Cooling Airflow Systems

Vehicle functional requirements, emission regulations, and thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Given the expected increase in emission-related heat rejection, suppliers and vehicle manufacturers must work together as partners in the design, selection, and packaging of cooling system components. An understanding and appreciation of airflow integration issues and vehicle-level trade-offs that effect system performance are important to the team effort. The severe duty cycles, minimal ram air, and sometimes unconventional package layouts present unique challenges.
Training / Education

Fundamentals of Truck and Off-Highway Transmission Systems

This course will develop a basic understanding of the fundamentals of operation and explain the current state-of-the-art design of the modern transmission designs. Transmission systems in current production will be used as a practical example throughout the seminar. Two basic product areas of truck and off-highway transmission systems will be reviewed: Planetary Automatic Transmissions, and Power-Shifted Transmissions. The functional requirements of the "current" market and the operational needs of its drivers will drive the course. Course material will be presented in the chronological order in which it was introduced into the marketplace.
Training / Education

Fundamentals of Electric Machines for Automotive Applications

As the electrification of automobiles is on the rise, it is imperative that the capabilities and limits of the associated devices and systems be understood at a higher level than previously considered adequate. For example, the Tesla Model S has 62 electric machines while the Model X has 70! They propel the vehicle and provide comfort too. Their design must reflect the worst case operating scenarios, duty cycles, environment, country of use and its standards, etc.
Training / Education

Ignition Issues and Their Impact on Engine Performance, Efficiency and Emission

Improved understanding and control of ignition and thereby combustion are critical in dealing with the problems of pollutants formation, engine performance, and fuel economy. This seminar will provide you with basic knowledge and recent advances in combustion-initiation (ignition) issues to more intelligently evaluate and harness their potentials. Thermodynamic and fluid mechanical properties of the unburned charge near the spark plug and at the time of ignition strongly affect the quality of the combustion and therefore the emission of the pollutants from the engine. Furthermore, a weak ignition limits engine performance and drivability.
Training / Education

Diesel Engine Technology Engineering Academy

This Academy covers the diesel engine engineering principles and the role it can play in the electrification of the transportation system. Several types of diesel engines are addressed with a review of their efficiency including how they might support the drive towards electrification. It is an intensive learning experience comprised of lecture and structured practical sessions, including a team-solved case study problem and/or a review and analysis of current issues facing the diesel industry. Evening sessions are included. Attendees will receive a copy of the textbook, Diesel Emissions and Their Control, by lead instructor Magdi K.
Training / Education

Application Development of Electric Vehicles and Hybrid Electric Vehicles Balancing Economic Objectives and Technical Requirements

This course is offered in China only. More and more stringent emission and fuel consumption regulations are pushing the automotive industry towards electrified powertrain and electrified vehicles. This is particularly evident in China, where there is an increased demand for electric (EV) and hybrid electric vehicles (HEV). Infrastructure is being built across the country for convenient charging. It must now be determined how to meet the technical targets for EV/HEV regulations under economic constraints and how to best develop the major ePowertrain components (battery and motor).
Training / Education

The Basics of Internal Combustion Engines

In your profession, an educated understanding of internal combustion engines is required, not optional. This two-day technology survey seminar covers the most relevant topics - ranging from the chemistry of combustion to the kinematics of internal components of the modern internal combustion engine - for maximum comprehension. Attendees will gain a practical, hands-on approach to the basics of the most common designs of internal combustion engines, as they apply to the gaseous cycles, thermodynamics and heat transfer to the major components, and the design theories that embody these concepts.
Training / Education

Exhaust Flow Performance and Pressure Drop of Exhaust Components and Systems

Designing more efficient and robust emission control components and exhaust systems results in more efficient performance, reduced backpressure and fuel penalty, and higher conversion efficiency. This course will help you to understand the motion of exhaust flow in both gasoline and diesel emission control components including flow-through and wall-flow devices such as catalytic converters, NOx adsorbers, diesel oxidation catalysts, diesel particulate filters as well as flow through the overall exhaust system.
Training / Education

Turbocharging Internal Combustion Engines

The need to control emissions and maintain fuel economy is driving the use of advanced turbocharging technology in both diesel and gasoline engines. As the use of diesel engines in passenger car gasoline and diesel engines increases, a greater focus on advanced turbocharging technology is emerging in an effort to reap the benefits obtained from turbocharging and engine downsizing. This seminar covers the basic concepts of turbocharging of gasoline and diesel engines (light and heavy duty), including turbocharger matching and charge air and EGR cooling, as well as associated controls.
Training / Education

Control Systems Simplified

The advent of digital computers and the availability of ever cheaper and faster micro processors have brought a tremendous amount of control system applications to the automotive industry in the last two decades. From engine and transmission systems, to virtually all chassis subsystems (brakes, suspensions, and steering), some level of computer control is present. Control systems theory is also being applied to comfort systems such as climate control and safety systems such as cruise control or collision mitigation systems.
Training / Education

Common Rail Diesel Fuel Injection

The improved efficiencies of the modern diesel engine have led to its increased use within the mobility industry. The vast majority of these diesel engines employ a high-pressure common rail fuel injection system to increase the engine's fuel-saving potential, emissions reduction, and overall performance. This one-day seminar will begin with a review of the basic principles of diesel engines and fuel injection systems. Diesel and alternative fuels will be discussed, followed by current and emerging diesel engine applications.
Training / Education

Gasoline Direct Injection (GDI) Engines

The quest for more efficient, smarter, and environmentally cleaner liquid-fueled spark ignition (SI) reciprocating engines is more alive and intense now than ever before. GDI SI engines have overcome many of the original limitations and are now becoming commonplace. This seminar will provide a comprehensive overview of GDI engines.
Training / Education

Diesel Engine Noise Control

This web seminar provides an in-depth overview of diesel engine noise including combustion and mechanical noise sources. In addition, the instructor will discuss a system approach to automotive integration including combining sub-systems and components to achieve overall vehicle noise and vibration goals.
Training / Education

Pathways to Autonomous Trucking

Vehicle automation and intelligent transportation systems will be the cornerstones of sustainable smart cities of the future. People movers seem to be at the heart of technology development, field trials and on-road testing, and strategic business partnerships when it comes to connectivity and automated driving. Majority of the focus has been on unmanned operation and door-to-door service in urban environments and not on highways. Highways are relatively simpler to handle from an engineering stand-point, but vehicles typically operate at higher speeds, so the cost of accidents is worse.
Training / Education

Fundamental Concepts of Turbocharging Modern Engines Current Practices and Trends

Turbocharging is rapidly becoming an integral part of many internal combustion engine systems. While it has long been a key to diesel engine performance, it is increasingly seen as an enabler in meeting many of the efficiency and performance requirements of modern automotive gasoline engines. This web seminar will discuss the basic concepts of turbocharging and air flow management of four-stroke engines. The course will explore the fundamentals of turbocharging, system design features, performance measures, and matching and selection criteria.
Training / Education

Variable Valve Actuation Design and Performance Impact on Advanced Powertrains

Engine valvetrain systems have become more capable and increasingly more compact in the quest to improve efficiency. The developments parallel the advancements in other key engine components such as fuel injection or spark systems, turbocharging, aftertreatment, base engine and controls. While the gasoline sector has seen a steady rise in the adoption of Variable Valve Actuation (VVA), Diesel systems have lagged behind and only a few systems have seen production. The level of VVA activity however in the Diesel sector is beginning to increase as tighter regulations of CO2 emissions approach.
Training / Education

Fundamentals of Powertrain Design for Hybrid Electric Vehicles

Driven by high fuel prices, environmental regulations, and consumer demand, the market for hybrid electric vehicles (HEV) has experienced rapid growth. Every major automotive company produces an HEV. There are approximately fifty different HEV models on the market and over eight million HEVs already sold. In order to meet current and future demands in the HEV and PHEV markets, success will depend on engineering personnel knowing how to develop and manufacture HEV powertrains. This two day seminar will cover the fundamentals of HEV powertrain design.
Training / Education

Powertrain Selection for Fuel Economy and Acceleration Performance

Developing vehicles that achieve optimum fuel economy and acceleration performance is critical to the success of any automotive company, yet many practicing engineers have not received formal training on the broad range of factors which influence vehicle performance. This seminar provides this fundamental understanding through the development of mathematical models that describe the relevant physics and through the hands-on application of automotive test equipment. Attendees will also be introduced to software used to predict vehicle performance.
Training / Education

Combustion and Emissions for Engineers

Public awareness regarding pollutants and their adverse health effects has created an urgent need for engineers to better understand the combustion process as well as the pollutants formed as by-products of that process. To effectively contribute to emission control strategies and design and develop emission control systems and components, a good understanding of the physical and mathematical principles of the combustion process is necessary. This seminar will bring issues related to combustion and emissions "down to earth," relying less on mathematical terms and more on physical explanations and analogies.
Training / Education

Automotive Heat Transfer

Heat transfer affects the performance, emissions and durability of the engine as well as the design, packaging, material choice and fatigue life of vehicle components. This course covers the broad range of heat transfer considerations that arise during the design and development of the engine and the vehicle with a primary focus on computational models and experimental validation covering the flow of heat from its origin in the engine cylinders and its transfer via multiple paths through engine components.