Refine Your Search

Topic

Author

Search Results

Technical Paper

Feasibility Study of an Online Gasoline Fractionating System for use in Spark-Ignition Engines

2001-03-05
2001-01-1193
A fuel fractionating system is designed and commissioned to separate standard gasoline fuel into two components by evaporation. The system is installed on a Ricardo E6 single cylinder research engine for testing purposes. Laboratory tests are carried out to determine the Research Octane Number (RON) and Motoring Octane Number (MON) of both fuel fractions. Further tests are carried out to characterize Spark-Ignition (SI) and Controlled Auto-Ignition (CAI) combustion under borderline knock conditions, and these are related to results from some primary reference fuels. SI results indicate that an increase in compression ratio of up to 1.0 may be achieved, along with better charge ignitability if this system is used with a stratified charge combustion regime. CAI results show that the two fuels exhibit similar knock-resistances over a range of operating conditions.
Technical Paper

Experimental Studies on Controlled Auto-ignition (CAI) Combustion of Gasoline in a 4-Stroke Engine

2001-03-05
2001-01-1030
This paper presents results from an experimental programme researching the in-cylinder conditions necessary to obtain gasoline Controlled Auto-ignition (CAI) combustion in a 4-stroke engine. A single-cylinder, variable compression ratio research engine is used for all experiments. Investigations concentrate on establishing the CAI operating range with regard to Air/Fuel ratio and Exhaust Gas Re-circulation (EGR) and their effect on ignition timing, combustion rate and variability, ISFC, and engine-out emissions, such as NOx, CO, and unburned HC. Comprehensive maps for each of the measured variables are presented and in relevant cases, these results are compared to those obtained during normal spark-ignition operation so that the benefits of CAI combustion can be more fully appreciated.
Technical Paper

The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 2: Effects of Carbon Dioxide

1996-05-01
961167
This is the second of a series of papers on how exhaust gas recirculation (EGR) affects diesel engine combustion and emissions. It concentrates on the effects of carbon dioxide (CO2) which is a principal constituent of EGR. Results are presented from a number of tests during which the nitrogen or oxygen in the engine inlet air was progressively replaced by CO2 and/or inert gases, whilst the engine speed, fuelling rate, injection timing, inlet charge total mass rate and inlet charge temperature were kept constant. In one set of tests, some of the nitrogen in the inlet air was progressively replaced by a carefully controlled mixture of CO2 and argon. This ensured that the added gas mixture had equal specific heat capacity to that of the nitrogen being replaced. Thus, the effects of dissociated CO2 on combustion and emissions could be isolated and quantified (chemical effect).
Technical Paper

Time-Resolved Measurements and Analysis of In-Cylinder Gases and Particulates in Compression-Ignition Engines

1996-05-01
961168
The extraction of small quantities of gas and particulates from diesel engine cylinders allows time-resolved gas and particulate analysis to be performed outside the engine during a short window of a few degrees crank angle at any stage of the engine cycle. The paper describes the design features and operation of a high-speed, intermittent sampling valve for extracting in-cylinder gases and particulates from diesel engines at any selected instant of the combustion process. Various sampling valve configurations are outlined. Detailed analysis of gas flow through the valve and the performance of the electromagnetic actuator and plunger are given in order to facilitate the design of the sampling valve. Finally, examples of the uses of the sampling valve in a direct-injection diesel engine are provided. These demonstrate how gaseous emissions such as NOx, uHC, CO2, and particulate emissions can be sampled at any part of the combustion process and analysed.
Technical Paper

The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 1: Effect of Reducing Inlet Charge Oxygen

1996-05-01
961165
This is a first of a series of papers describing how the replacement of some of the inlet air with EGR modifies the diesel combustion process and thereby affects the exhaust emissions. This paper deals with only the reduction of oxygen in the inlet charge to the engine (dilution effect). The oxygen in the inlet charge to a direct injection diesel engine was progressively replaced by inert gases, whilst the engine speed, fuelling rate, injection timing, total mass and the specific heat capacity of the inlet charge were kept constant. The use of inert gases for oxygen replacement, rather than carbon dioxide (CO2) or water vapour normally found in EGR, ensured that the effects on combustion of dissociation of these species were excluded. In addition, the effects of oxygen replacement on ignition delay were isolated and quantified.
Technical Paper

A Guide to Measurement of Flame Temperature and Soot Concentration in Diesel Engines Using the Two-Colour Method Part I: Principles

1994-10-01
941956
The two-colour method is based on optical pyrometry and can readily be implemented at a modest cost for the measurement of the instantaneous flame temperature and soot concentration in the cylinders of diesel engines. With appropriate modification, this method can be applied to other continuous and intermittent combustion systems, such as those for gas turbine and boiler burners. This paper outlines the theoretical basis of the method, with particular attention being paid to the assumptions relating to the evaluation of the flame temperature and soot concentration. A companion paper deals with the practical problems involved in constructing a working system, including suitable calibration techniques, and assessment of the method accuracy.
Technical Paper

A Guide to Measurement of Flame Temperature and Soot Concentration in Diesel Engines Using the Two-Colour Method Part 2: Implementation

1994-10-01
941957
The measurement of the instantaneous flame temperature and soot concentration in the combustion chamber of a running diesel engine can provide useful information relating to the formation of two important exhaust pollutants, NOx and particulates. The two-colour method is based on optical pyrometry and it can provide estimates of the instantaneous flame temperature and soot concentration. The theoretical basis of the method is outlined in a companion paper. This paper deals with the practical problems involved in the construction of a working system, including suitable calibration techniques. The accuracy of the measurements of flame temperature and soot concentration is also discussed using results from a various sources.
Technical Paper

The Effects on Diesel Combustion and Emissions of Reducing Inlet Charge Mass Due to Thermal Throttling with Hot EGR

1998-02-23
980185
This paper is a complementary to previous investigations by the authors (1,2,3,4) on the different effects of EGR on combustion and emissions in DI diesel engine. In addition to the several effects that cold EGR has on combustion and emissions the application of hot EGR results in increasing the inlet charge temperature, thereby, for naturally aspirated engines, lowering the inlet charge mass due to thermal throttling. An associated consequence of thermal throttling is the reduction in the amount of oxygen in the inlet charge. Uncooled EGR, therefore, affects combustion and emissions in two ways: through the reduction in the inlet charge mass and through the increase in inlet charge temperature. The effect on combustion and emissions of increasing the inlet charge temperature (without reducing the inlet charge mass) has been dealt with in ref. (1).
Technical Paper

Effects of EGR on Heat Release in Diesel Combustion

1998-02-23
980184
The effects of Exhaust Gas Recirculation (EGR) on diesel engine exhaust emissions were isolated and studied in earlier investigations (1,2,3,4,5). This paper analyses the heat release patterns during the combustion process and co-relates the results with the exhaust emissions. The EGR effects considered include the dilution of the inlet charge with CO2 or water vapour, the increase in the inlet charge temperature, and the thermal throttling arising from the use of hot EGR. The use of diluents (CO2 and H2O), which are the principal constituents of EGR, caused an increase in ignition delay and a shift in the location of start of combustion. As a consequence of this shift, the whole combustion process was also shifted further towards the expansion stroke. This resulted in the products of combustion spending shorter periods at high temperatures which lowered the NOx formation rate.
Technical Paper

The Effect on Engine Performance and NO Emissions of a Two-Stage Expansion Cycle in a Spark Ignition Engine

1997-10-01
972991
This paper presents the development of an engine simulation program for SI engines and its application to a two-stage expansion cycle. The two-stage expansion analysis is performed using the engine simulation, where a sudden expansion much faster than the normal expansion takes place during the expansion stroke. The changes in NO emissions and knock tolerance of the resulting new engine cycle are investigated for the same compression ratio. The changes in NO emissions and specific fuel consumption through increasing the compression ratio in order to return to the same amount of work done within the cycle are also studied.
Technical Paper

The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 3: Effects of Water Vapour

1997-05-01
971659
Water vapour is a main constituent of exhaust gas recirculation (EGR) in diesel engines and its influence on combustion and emissions were investigated. The following effects of the water vapour were examined experimentally: the effect of replacing part of the inlet charge oxygen (dilution effect), the effect of the higher specific heat capacity of water vapour in comparison with that of oxygen it replaces (thermal effect), the effect of dissociation of water vapour (chemical effect), as well as the overall effect of water vapour on combustion and emissions. Water vapour was introduced into the inlet charge, progressively, so that up to 3 percent of the inlet charge mass was displaced. This was equivalent to the amount of water vapour contained in 52 percent by mass of EGR for the engine operating condition tested in this work.
Technical Paper

Study of Flame Speed and Knocking Combustion of Gasoline, Ethanol and Hydrous Ethanol (10% Water) at Different Air/Fuel Ratios with Port-Fuel Injection

2018-04-03
2018-01-0655
In this paper, an experimental study was performed to investigate characteristics of flame propagation and knocking combustion of hydrous (10% water content) and anhydrous ethanol at different air/fuel ratios in comparison to RON95 gasoline. Experiments were conducted in a full bore overhead optical access single cylinder port-fuel injection spark-ignition engine. High speed images of total chemiluminescence and OH* emission was recorded together with the in-cylinder pressure, from which the heat release data were derived. The results show that under the stoichiometric condition anhydrous ethanol and wet ethanol with 10% water (E90W10) generated higher IMEP with at an ignition timing slightly retarded from MBT than the gasoline fuel for a fixed throttle position. Under rich and stoichiometric conditions, the knock limited spark timing occurred at 35 CA BTDC whereas both ethanol and E90W10 were free from knocking combustion at the same operating condition.
Technical Paper

Continuous Load Adjustment Strategy of a Gasoline HCCI-SI Engine Fully Controlled by Exhaust Gas

2011-04-12
2011-01-1408
Homogeneous charge compression ignition (HCCI) technology is promising to reduce engine exhaust emissions and fuel consumption. However, it is still confronted with the problem of its narrow operation range that covers only the light and medium loads. Therefore, to expand the operation range of HCCI, mode switching between HCCI combustion and transition SI combustion is necessary, which may bring additional problems to be resolved, including load fluctuation and increasing the complexity of control strategy, etc. In this paper, a continuously adjustable load strategy is proposed for gasoline engines. With the application of the strategy, engine load can be adjusted continuously by the in-cylinder residual gas fraction in the whole operation range. In this research, hybrid combustion is employed to bridge the gaps between HCCI and traditional SI and thus realize smooth transition between different load points.
Journal Article

Pneumatic Regenerative Engine Braking Technology for Buses and Commercial Vehicles

2011-09-13
2011-01-2176
In this paper, a novel cost-effective air hybrid powertrain concept for buses and commercial vehicles, Brunel Regenerative Engine Braking Device (RegenEBD) technology, is presented and its performance during the braking process is analysed using the Ricardo WAVE engine simulation programme. RegenEBD is designed to convert kinetic energy into pneumatic energy in the compressed air saved in an air tank. Its operation is achieved by using a production engine braking device and a proprietary intake system design. During the braking operation, the engine switches from the firing mode to the compressor mode by keeping the intake valves from fully closed throughout the four-strokes by installing the Variable Valve Exhaust Brake (VVEB) device on the intake valves. As a result, the induced air could be compressed through the opening gap of intake valves into the air tank through the modified intake system.
Technical Paper

Combustion Characteristics of CAI Combustion with Alcohol Fuels

2010-04-12
2010-01-0843
Due to its potential for simultaneous improvement in fuel consumption and exhaust emissions, controlled autoignition (CAI) combustion has been subject to continuous research in the last several years. At the same time, there has been a lot of interest in the use of alternative fuels in order to reduce reliance on conventional fossil fuels. Therefore, this experimental study has been carried out to investigate the effect of alcohol fuels on the CAI combustion process and on the resulting engine performance. The experimental work was conducted on an optical single cylinder engine with an air-assisted injector. To achieve controlled autoignition, residual gas was trapped in the cylinder by using negative valve overlap and an intake air heater was used to ensure stable CAI combustion in the optical engine. Methanol, ethanol and blended fuels were tested and compared with the results of gasoline.
Journal Article

The Performance Characteristics of an Production Oriented Air Hybrid Powertrain

2010-04-12
2010-01-0821
In a previous paper [ 1 ], the authors have proposed a cost effective air hybrid concept based on a proprietary intake system and cam profile switching (CPS) system [ 2 ]. It was shown through engine simulations that the pneumatic hybrid operation could be achieved with about 15% regenerative efficiency. The proposed air hybrid operation can be achieved with proven technologies and engine components and hence it represents a cost-effective, reliable and quick deployable solution for low carbon vehicles. In this work, a four-cylinder 2 litre diesel engine has been modelled to operate on refined air hybrid engine configurations and the braking and motoring performance of each configuration have been studied. Both air hybrid systems can be constructed with production technologies and incur minimum changes to the existing engine design.
Technical Paper

Investigation of Split Injection in a Single Cylinder Optical Diesel Engine

2010-04-12
2010-01-0605
Over the last decade, the diesel engine has made dramatic progress in its performance and market penetration. However, in order to meet future emissions legislations, Nitrogen Oxides (NOx) and particulate matters' (PM) emissions will need to be reduced simultaneously. Nowadays researchers are focused on different combustion modes which can have a great potential for both low soot and low NOx. In order to achieve this, different injection strategies have been investigated. This study investigates the effects of split injection strategies with high levels of Exhaust Gas Recirculation (EGR) on combustion performance and emissions in a single-cylinder direct injection optical diesel engine. The investigation is focused on the effects of injection timing of split injection strategies. A Ricardo Hydra single-cylinder optical engine was used in which conventional experimental methods like cylinder pressure data, heat release analysis and exhaust emissions analysis were applied.
Technical Paper

CAI Combustion with Methanol and Ethanol in an Air-Assisted Direct Injection SI Engine

2008-06-23
2008-01-1673
CAI combustion has the potential to be the most clean combustion technology in internal combustion engines and is being intensively researched. Following the previous research on CAI combustion of gasoline fuel, systematic investigation is being carried out on the application of bio-fuels in CAI combustion. As part of an on-going research project, CAI combustion of methanol and ethanol was studied on a single-cylinder direct gasoline engine with an air-assisted injector. The CAI combustion was achieved by trapping part of burnt gas within the cylinder through using short-duration camshafts and early closure of the exhaust valves. During the experiment the engine speed was varied from 1200rpm to 2100rpm and the air/fuel ratio was altered from the stoichiometry to the misfire limit. Their combustion characteristics were obtained by analysing cylinder pressure trace.
Technical Paper

In-Cylinder Studies of CAI Combustion with Negative Valve Overlap and Simultaneous Chemiluminescence Analysis

2009-04-20
2009-01-1103
The negative valve overlap has been shown as one of the most effective means to achieve controlled autoignition combustion in a four-stroke gasoline engine. A number of researches have been carried out on the performance and emission characteristics of CAI engines but there are still some fundamental questions that are yet to be addressed such as in-cylinder process. In the present study, a Ricardo Hydra single cylinder, four stroke optical gasoline engine was instrumented to investigate CAI combustion through negative valve overlap configuration. The effects of direct fuel injection timings and direct air injection at lambda 1 were studied by means of simultaneous in-cylinder heat release study and high speed images of complete chemiluminescence emission, OH and CHO radicals. In particular, the minor combustion process during the NVO period with various air injection quantities was studied with both heat release analysis and chemiluminescence results.
Technical Paper

Investigation of CAI Combustion with Positive Valve Overlap and Enlargement of CAI Operating Range

2009-04-20
2009-01-1104
Controlled Auto-Ignition (CAI) combustion was investigated in a Ricardo E6 single cylinder, four-stroke gasoline engine. CAI combustion was achieved by employing positive valve overlap in combination with variable compression ratios and intake air temperatures. The combustion characteristics and emissions were studied in order to understand the major advantages and drawbacks of CAI combustion with positive valve overlap. The enlargement of the CAI operational region was obtained by boosting intake air and adding external EGR. The lean-boosted operation elevated the range of CAI combustion to the higher load region, whilst the use of external EGR allowed the engine to operate with CAI combustion in the region between boosted and N/A CAI operational ranges. The results were analyzed to investigate combustion characteristics, performance and emissions of the boosted CAI operations.
X