Refine Your Search

Search Results

Viewing 1 to 18 of 18
Standard

Pneumatic Spring Terminology

2016-04-01
CURRENT
J511_201604
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

PNEUMATIC SPRING TERMINOLOGY

1989-06-01
HISTORICAL
J511_198906
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

Elastomeric Bushing "TRAC" Application Code

2017-02-09
CURRENT
J1883_201702
The bushing "TRAC" code is intended to be a tool that will aid in the definition of the geometric environment for the test, or use, of an elastomeric bushing.
Standard

ELASTOMERIC BUSHING "TRAC" APPLICATION CODE

1994-10-01
HISTORICAL
J1883_199410
The bushing "TRAC" code is intended to be a tool that will aid in the definition of the geometric environment for the test, or use, of an elastomeric bushing.
Standard

Spherical Rod Ends

1979-09-01
HISTORICAL
J1120_197909
This SAE Standard covers the general and dimensional data for industrial quality spherical rod ends commonly used on control linkages in automotive, marine, construction, and industrial equipment applications. The rod ends described are available from several manufacturers within the range of the interchangeable specifications. The sliding contact spherical self-aligning bearing members (ball and socket) are available in a variety of materials in types shown. The load capacities and wear capabilities vary considerably with the design and fabrication. It is suggested that the manufacturers be consulted for recommendations for the type and design appropriate to particular applications.
Standard

Recommended Guidelines for Fatigue Testing of Elastomeric Materials and Components

1998-02-01
HISTORICAL
J1183_199802
The purpose of this SAE Recommended Practice is to review factors that influence the behavior of elastomers under conditions of dynamic stress and to provide guidance concerning laboratory procedures for determining the fatigue characteristics of elastomeric materials and fabricated elastomeric components.
Standard

Recommended Guidelines for Fatigue Testing of Elastomeric Materials and Components

2017-02-13
CURRENT
J1183_201702
The purpose of this SAE Recommended Practice is to review factors that influence the behavior of elastomers under conditions of dynamic stress and to provide guidance concerning laboratory procedures for determining the fatigue characteristics of elastomeric materials and fabricated elastomeric components.
Standard

Testing Dynamic Properties of Elastomeric Isolators

2017-02-09
CURRENT
J1085_201702
These methods cover testing procedures for defining and specifying the dynamic characteristics of simple elastomers and simple fabricated elastomeric isolators used in vehicle components. Simple, here, is defined as solid (non-hydraulic) components tested at frequencies less than or equal to 25 Hz.
Standard

Testing Dynamic Properties of Elastomeric Isolators

1999-05-01
HISTORICAL
J1085_199905
These methods cover testing procedures for defining and specifying the dynamic characteristics of simple elastomers and simple fabricated elastomeric isolators used in vehicle components. Simple, here, is defined as solid (non-hydraulic) components tested at frequencies less than or equal to 25 Hz.
Standard

Recommended Practices for Design and Evaluation of Passenger and Light Truck Coolant Hose Clamped Joints

1996-07-01
HISTORICAL
J1697_199607
This SAE Recommended Practice covers recommended practices for design and evaluation of hose clamped joints primarily in automotive applications. It is intended to: (a) evaluate current joint designs, (b) compare existing designs, (c) aid in the development of new designs, (d) give objective results once weights are set, (e) rate the overall design and individual sections of design, (f) encourage future research by industry and the OEM's.
Standard

Recommended Practices for Design and Evaluation of Passenger and Light Truck Coolant Hose Clamped Joints

2003-11-07
HISTORICAL
J1697_200311
This SAE Recommended Practice covers recommended practices for design and evaluation of hose clamped joints primarily in automotive applications. It is intended to: (a) evaluate current joint designs, (b) compare existing designs, (c) aid in the development of new designs, (d) give objective results once weights are set, (e) rate the overall design and individual sections of design, and (f) encourage future research by industry and the OEM's.
Standard

Recommended Practices for Design and Evaluation of Passenger and Light Truck Coolant Hose Clamped Joints

2013-07-09
CURRENT
J1697_201307
This SAE Recommended Practice covers recommended practices for design and evaluation of hose clamped joints primarily in automotive applications. It is intended to: (a) evaluate current joint designs, (b) compare existing designs, (c) aid in the development of new designs, (d) give objective results once weights are set, (e) rate the overall design and individual sections of design, and (f) encourage future research by industry and the OEM's.
Standard

Test Method for Evaluating the Sealing Capability of Hose Connections with a PVT Test Facility

2012-10-24
CURRENT
J1610_201210
This test method provides a standardized procedure for evaluating the sealing capability of a hose connection or any of the individual components of the connection with a pressure, vibration, and temperature (PVT) test facility. This test method consists of a test procedure which includes vibration and coolant flow (#1 ) and a similar test procedure specified without vibration or coolant flow (#2). Any test parameters, other than those specified in this SAE Recommended Practice, are to be agreed to by the tester and the requestor.
Standard

Test Method for Evaluating the Sealing Capability of Hose connections with a PVT Test Facility

1992-06-24
HISTORICAL
J1610_199206
This test method provides a standardized procedure for evaluating the sealing capability of a hose connection or any of the individual components of the connection with a pressure, vibration, and temperature (PVT) test facility. This test method consists of a test procedure which includes vibration and coolant flow and a similar test procedure specified without vibration or coolant flow. Any test parameters, other than those specified in this SAE Recommended Practice, are to be agreed to by the tester and the requestor.
Standard

Test Method for Evaluating the Sealing Capability of Hose Connectionswith a PVT Test Facility

2001-06-08
HISTORICAL
J1610_200106
This test method provides a standardized procedure for evaluating the sealing capability of a hose connection or any of the individual components of the connection with a pressure, vibration, and temperature (PVT) test facility. This test method consists of a test procedure which includes vibration and coolant flow (#1) and a similar test procedure specified without vibration or coolant flow (#2). Any test parameters, other than those specified in this SAE Recommended Practice, are to be agreed to by the tester and the requestor.
Standard

Ball Stud and Socket Assembly - Test Procedures

2012-10-15
CURRENT
J193_201210
The test procedures describe a method to laboratory test suspension and steering system ball stud and/or socket assemblies for functional characteristics. This procedure is an extension of SAE J491b recommended practice on dimensional recommendations for ball studs towards a vehicle application. The tests are conducted either on ball studs individually or on complete integral assemblies representing the application.
Standard

Fatigue Testing Procedure for Suspension-Leaf Springs

2016-04-05
CURRENT
J1528_201604
Only fully processed new springs which are representative of springs intended for the vehicle shall be used for the tests. No complete spring or separate leaf shall be used for more than one test.
Standard

FATIGUE TESTING PROCEDURE FOR SUSPENSION-LEAF SPRINGS

1990-06-30
HISTORICAL
J1528_199006
Only fully processed new springs which are representative of springs intended for the vehicle shall be used for the tests. No complete spring or separate leaf shall be used for more than one test.
X