Refine Your Search

Topic

Search Results

Standard

Jet Blast Windshield Rain Removal Systems for Commercial Transport Aircraft

1997-10-01
HISTORICAL
AIR805B
The purpose of this information report is to present factors which affect the design and development of jet blast windshield rain removal systems for commercial transport aircraft. A satisfactory analytical approach to the design of these systems has not yet been developed. Although detailed performance data are available for some test configurations, rain removal systems will generally be unique to specific aircraft. This, then, requires a preliminary design for the system based on available empirical data to be followed with an extensive laboratory development program.
Standard

HEAT TRANSFER PROBLEMS ASSOCIATED WITH AEROSPACE VEHICLES

1978-04-01
CURRENT
AIR732
The discipline of heat transfer concerns itself basically with the three modes of transferring thermal energy (convection, conduction, and radiation) and their inter-relations. In any phase of aerospace vehicle design, the importance of any of these basic modes will vary depending upon the natural and induced environment the mission imposes as well as the vehicle configuration.
Standard

Environmental Control for Civil Supersonic Transport

1994-12-01
HISTORICAL
AIR746B
This document supplements ARP85, to extend its use in the design of ECS for supersonic transports. The ECS provides an environment controlled within specified operational limits of comfort and safety, for humans, animals, and equipment. These limits include pressure, temperature, humidity, conditioned air velocity, ventilation rate, thermal radiation, wall temperature, audible noise, vibration, and composition (ozone, contaminants, etc.) of the environment. The ECS is comprised of equipment, controls, and indicators that supply and distribute conditioned air to the occupied compartments. This system is defined within the ATA 100 specification, Chapter 21. It interfaces with the pneumatic system (Chapter 36 of ATA 100), at the inlet of the air conditioning system shutoff valves.
Standard

Environmental Control for Civil Supersonic Transport

2011-08-10
CURRENT
AIR746C
This document supplements ARP85, to extend its use in the design of ECS for supersonic transports. The ECS provides an environment controlled within specified operational limits of comfort and safety, for humans, animals, and equipment. These limits include pressure, temperature, humidity, conditioned air velocity, ventilation rate, thermal radiation, wall temperature, audible noise, vibration, and composition (ozone, contaminants, etc.) of the environment. The ECS is comprised of equipment, controls, and indicators that supply and distribute conditioned air to the occupied compartments. This system is defined within the ATA 100 specification, Chapter 21. It interfaces with the pneumatic system (Chapter 36 of ATA 100), at the inlet of the air conditioning system shutoff valves.
Standard

OZONE PROBLEMS IN HIGH ALTITUDE AIRCRAFT

1996-07-01
HISTORICAL
AIR910A
The purpose of this report is to provide information on ozone and its control in high altitude aircraft environmental systems. Sources of this information are listed in the selected bibliography appearing at the end of this report, to which references are made throughout.
Standard

Electrical and Electronic Equipment Cooling in Commercial Transports

1992-09-01
CURRENT
AIR64B
This document considers the cooling of equipment installed in equipment centers, which usually consist of rack-mounted equipment and panel mounted equipment in the flight deck. In instances where these two locations result in different requirements, these are identified. For purposes of this document, the cooled equipment is referred to generally as E/E equipment, denoting that both electrical and electronic equipment is considered, or as an E/E equipment line-replaceable-unit (LRU). The majority of cooled equipment takes the form of LRUs. This document primarily relates to E/E equipment which is designed to use forced air cooling in order to maintain the equipment within acceptable environmental limits, in order to maintain equipment operating performance (within acceptable tolerances), and to maintain reliability. Cooling may be applied internally or externally to the case of the item of E/E equipment.
Standard

Aircraft Humidification

2016-10-21
WIP
AIR1609B
This SAE Aerospace Information Report (AIR) covers the design parameters for various methods of humidification applicable to aircraft, the physiological aspects of low humidities, the possible benefits of controlling cabin humidity, the penalties associated with humidification, and the problems which must be solved for practical aircraft humidification systems. The design information is applicable to commercial and military aircraft. The physiological aspects cover all aircraft environmental control applications.
Standard

Cooling of Military Avionic Equipment

2005-02-09
CURRENT
AIR1277B
This SAE Aerospace Information Report (AIR) contains information on the thermal design requirements of airborne avionic systems used in military airborne applications. Methods are explored which are commonly used to provide thermal control of avionic systems. Both air and liquid cooled systems are discussed.
Standard

COOLING OF MODERN AIRBORNE ELECTRONIC EQUIPMENT

1976-05-01
HISTORICAL
AIR1277
This document contains information on the cooling of modern airborne electronics, emphasizing the use of a heat exchange surface which separates coolant and component. It supplements the information contained in AIR 64 for the draw through method and in AIR 728 for high Mach Number aircraft. Report contents include basic methods, characteristics of coolants, application inside and outside of the "black box" use of thermostatic controls to improve reliability and system design. Characteristics of typical cooling components are treated sufficiently to permit selection and to estimate size and weight. While emphasis is placed herein on equipment cooling, section 9 dealing with thermal control of the environment, reminds the reader that some equipment will require heating for start up from a cold condition or as a means to control temperature within narrow limits (e.g. in a crystal oven). Property data and constants are also tabulated.
Standard

Fault Isolation in Environmental Control Systems of Commercial Transports

1993-11-01
CURRENT
AIR1266A
This SAE Aerospace Information Report (AIR) outlines concepts for the design and use of fault isolation equipment that have general application. The specific focus is on fault isolation of environmental control systems (ECS) in commercial transports. Presented are general fault isolation purposes, design principles, and demonstration of compliance criteria. These are followed by three design examples to aid in understanding the design principles. Future trends in built-in-test-equipment (BITE) design are discussed, some of which represent concepts already being implemented on new equipment.
Standard

ANIMAL ENVIRONMENT IN CARGO COMPARTMENTS

1985-10-01
HISTORICAL
AIR1600
The environmental factors of prime importance in the transport of animals in aircraft are air temperature, humidity and carbon dioxide concentration, and of course space (or volume) limitations. Secondary factors are air velocity, noise, lighting, etc. Pressure is not addressed herein as pressure levels and rates of change are totally dictated by human occupancy requirements. Some basic governmental documents, such as References 1, 2 and 3, define overall requirements for animal transportation, but with very limited data on environmental requirements. Reference 4 gives some airplane characteristics measured during animal transportation from the USA to foreign destinations. Temperature and humidity profiles are indicative of airplane characteristics. This report presents information on the temperature, humidity, ventilation, and carbon dioxide limitations and the metabolic heat release rates for animals which will allow the determination of the environment required by the animals.
Standard

Animal Environment in Cargo Compartments

1997-10-01
CURRENT
AIR1600A
The environmental factors of prime importance in the transport of animals in aircraft are air temperature, humidity and carbon dioxide concentration, and of course space (or volume) limitations. Secondary factors are air velocity, noise, lighting, etc. Pressure is not addressed herein as pressure levels and rates of change are totally dictated by human occupancy requirements. Some basic governmental documents, such as References 1, 2 and 3, define overall requirements for animal transportation, but with very limited data on environmental requirements. Reference 4 gives some airplane characteristics measured during animal transportation from the USA to foreign destinations. Temperature and humidity profiles are indicative of airplane characteristics. This report presents information on the temperature, humidity, ventilation, and carbon dioxide limitations and the metabolic heat release rates for animals which will allow the determination of the environment required by the animals.
Standard

THERMOPHYSICAL CHARACTERISTICS OF WORKING FLUIDS AND HEAT TRANSFER FLUIDS

1992-04-01
HISTORICAL
AIR1168/10
This AIR is arranged in the following two sections: 2E - Thermodynamic Characteristics of Working Fluids, which contains thermodynamic diagrams for a number of working fluids currently in use and supplied by various industrial firms. 2F - Properties of Heat Transfer Fluids, which contains data, primarily in graphical form, on fluids that are frequently used in fluid heat transfer loops. Other properties of the environment, gases, liquids, and solids, can be found, as follows, in AIR1168/9: 2A-Properties of the Natural Environment 2B-Properties of Gases 2C-Properties of Liquids 2D-Properties of Solids
Standard

Thermophysical Characteristics of Working Fluids and Heat Transfer Fluids

2017-05-19
CURRENT
AIR1168/10A
This AIR is arranged in the following two sections: 2E - Thermodynamic Characteristics of Working Fluids, which contains thermodynamic diagrams for a number of working fluids currently in use and supplied by various industrial firms. 2F - Properties of Heat Transfer Fluids, which contains data, primarily in graphical form, on fluids that are frequently used in fluid heat transfer loops. Other properties of the environment, gases, liquids, and solids, can be found, as follows, in AIR1168/9: 2A-Properties of the Natural Environment 2B-Properties of Gases 2C-Properties of Liquids 2D-Properties of Solids
X