Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Commercial and Off-Road Vehicle Cooling Airflow Systems

Vehicle functional requirements, emission regulations, and thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Given the expected increase in emission-related heat rejection, suppliers and vehicle manufacturers must work together as partners in the design, selection, and packaging of cooling system components. An understanding and appreciation of airflow integration issues and vehicle-level trade-offs that effect system performance are important to the team effort. The severe duty cycles, minimal ram air, and sometimes unconventional package layouts present unique challenges.
Standard

Minimum Performance & Compatibility Criteria for MVAC Flushing Fluids used in R-134a & R-1234yf Systems.

2015-02-16
WIP
J3091
This SAE standard applies to any and all Flushing Fluids intended for aftermarket use to clean and decontaminate sections of the refrigerant circuit within a vehicle A/C system. This standard provided testing and acceptance criteria for determining minimum performance and compatibility of Flushing Fluids with A/C system materials and components, which may be intended for use in servicing vehicle A/C systems. This standard will only indicate a Flushing Fluid's minimum performance criteria, and that it is chemically compatible with materials used in the A/C system. It is not the intent of this document to identify requirements for ultraviolet leaks detection dyes, as such dyes must meet the requirements of SAE J 2297. It is not the intention of this document to identify requirements for system additives, as such additives must meet the requirements of SAE J 2670.
Standard

Aftermarket Service Lubricants for use in MVAC Systems

2017-04-07
WIP
J3140
This SAE standard applies to compressor lubricants intended for aftermarket use in the refrigerant circuit of vehicle air-conditioning systems. This standard does not grant the user to qualify a lubricant as OEM approved. This SAE Standard is not limited by refrigerant selection, however, only refrigerants identified in SAE 639 may apply for SAE J2911 submission and container labeling.
Collection

Climate Control, 2018

2018-04-03
Climate control is a defining vehicle attribute and is associated with brand image. Thermal performance is critical to customer satisfaction. The primary objective is to deliver occupant safety and thermal comfort at minimum energy consumption, yet the system has strong design interaction with other vehicle systems. Noise, Air Quality, and Energy ace are just a few of the recent advances.
Collection

Climate Control, 2017

2017-03-28
Climate control is a defining vehicle attribute and is associated with brand image. Thermal performance is critical to customer satisfaction. The primary objective is to deliver occupant safety and thermal comfort at minimum energy consumption, yet the system has strong design interaction with other vehicle systems. Noise, Air Quality, and Energy ace are just a few of the recent advances.
Video

Neural Network-based Optimal Control for Advanced Vehicular Thermal Management Systems

2011-12-05
Advanced vehicular thermal management system can improve engine performance, minimize fuel consumption, and reduce emissions by harmoniously operating computer-controlled servomotor components. In this paper, a neural network-based optimal control strategy is proposed to regulate the engine temperature through the advanced cooling system. Presenter Asma Al Tamimi, Hashemite University
Video

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-11-29
Today CFD is an important tool for engineers in the automotive industry who model and simulate fluid flow. For the complex field of Underhood Thermal Management, CFD has become a very important tool to engineer the cooling airflow process in the engine bay of vehicles. Presenter Peter Gullberg, Chalmers University of Technology
Video

Impact of Auxiliary Loads on Fuel Economy and Emissions in Transit Bus Applications

2012-05-25
In this paper we present the results of full-scale chassis dynamometer testing of two hybrid transit bus configurations, parallel and series and, in addition, quantify the impact of air conditioning. We also study the impact of using an electrically controlled cooling fan. The main trend that is noted, and perhaps expected, is that a significant fuel penalty is encountered during operation with air conditioning, ranging from 17-27% for the four buses considered. The testing shows that the series hybrid architecture is more efficient than the parallel hybrid in improving fuel economy during urban, low speed stop and go transit bus applications. In addition, smart cooling systems, such as the electrically controlled cooling fan can show a fuel economy benefit especially during high AC (or other increased engine load) conditions.
Video

High Speed Machining of CFRP Parts

2012-03-16
High Speed Machining of CFRP Parts Investigation of the influence of new geometries, cutting datas and coolant capabilities on the surface finish of CFRP parts. State of the art: Different CFRP grades and machining conditions make geometry adjustments to the tool necessary. Mechanical failures through machining operations can be avoided in most of the cases. New unidirectional CFRP grades and dry machining processes again lead to machining problems. This study investigates new geometries to avoid heat damage with dry maching and air coolant in case of unidirectional CFRP. With help of a thermo camera and the surface investigation with a scanning electron microscope, heat damage can be analysed and therefore new geometries can be developed and tested. Target is to develop a new multi purpose CFRP geometry to meet the requirements of the future. The reduction of different geometries used leads to major cost savings. Presenter Ingo von Puttkamer, Guhring oHG
Training / Education

Introduction to Cooling Airflow Systems Web Seminar RePlay

Anytime
Vehicle functional requirements, diesel emission regulations, and subsystem thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Severe duty cycles, minimal ram air, fouling, and sometimes unconventional package layouts present unique challenges to the designer. This course introduces many airflow integration issues and vehicle-level trade-offs that effect system performance and drive the design. The goal of this course is to introduce engineers and managers to the basic principles of diesel cooling airflow systems for commercial and off-road vehicles.
Technical Paper

Numerical Investigation of Narrow-Band Noise Generation by Automotive Cooling Fans

2020-09-30
2020-01-1513
Axial cooling fans are commonly used in electric vehicles to cool batteries with high heating load. One drawback of the cooling fans is the high aeroacoustic noise level resulting from the fan blades and the obstacles facing the airflow. To create a comfortable cabin environment in the vehicle, and to reduce exterior noise emission, a low-noise installation design of the axial fan is required. The purpose of the project is to develop an efficient computational aeroacoustics (CAA) simulation process to assist the cooling-fan installation design. This paper reports the current progress of the development, where the narrow-band components of the fan noise is focused on. Two methods are used to compute the noise source. In the first method the source is computed from the flow field obtained using the unsteady Reynolds-averaged Navier-Stokes equations (unsteady RANS, or URANS) model.
Book

Principles of Engine Cooling Systems, Components and Maintenance

1990-10-01
Completely revised as a result of the significant progress made in cooling system design and maintenance practices and procedures, HS-40 provides current, comprehensive information on the description, function, and maintenance of engine liquid-cooling systems used in light and heavy-duty vehicles. Information-packed chapters discuss the interrelation between the cooling system and other engine systems, cooling system components, general preventive maintenance, and troubleshooting.
Technical Paper

Front-Wheel Drives

1930-01-01
300001
ENGINEERING considerations leading to the former almost universal practice of steering with the front wheels and driving and braking with the rear wheels are reviewed, and the desire for bodies lower than can be made with conventional design is given as the main reason for the present interest in front drives. For early history, European development, racing practice and the closely related subject of four-wheel drives, the reader is referred to a previous paper by Herbert Chase.2 One major advantage to be secured with front-drive design is lower unsprung weight, which should promote easy riding and road-holding ability and reduce tire wear. An inherent disadvantage is that driving-torque reaction and hill climbing shift some weight from the front axle to the rear axle, thus slightly reducing the tractive effort possible; but this shift is not considered important, since the control of weight distribution is in the hands of the designer.
Technical Paper

Engine Cooling

1932-01-01
320063
FROM 25 to 35 per cent of the heat energy of the fuel inducted into the cylinders of an internal-combustion engine must be eliminated by the cooling system. As this waste requires the expenditure of energy, the devising of an efficient cooling system is imperative. The author, who is a leading American authority on engine problems, discusses the theory of liquid-cooling, gives heat-transfer and temperature-balance equations that must be satisfied and points out the three interrelated variable factors that must be incorporated in their most economical relation. The cooling system must be studied as a whole, rather than from the standpoint of any particular unit. Some commonly held beliefs regarding fans, fuel-pumps and oil-temperature control are controverted. Five elements necessary for an efficient cooling system are enumerated.
Technical Paper

AUTOMOBILE-BODY REFINEMENTS AND AIR CONDITIONING

1933-01-01
330026
Dependability, economy, durability, speed, safety, appearance and riding comfort, are the factors considered by Dr. Moss in his resume of progress made in automobile development. Passing then to the problem of the effect of automobile riding on the health of passengers and drivers, he discusses air conditioning, eye strain and body posture while riding. Carbon monoxide probably is the most important of the extraneous harmful substances in relation to air conditioning and an inexpensive investigation, using a carbon-monoxide indicator, is recommended to secure its elimination. Other harmful factors are temperature, relative humidity and motion of the air. A novel suggestion is made that rats be used experimentally in studying the effects of drafts on passengers. Studies to lessen eye strain and improve body posture are also desirable.
Technical Paper

Frame Design and Front-End Stability

1932-01-01
320003
EXPERIMENTAL work done to ascertain the influence of frame and body structures upon front-end stability of the automobile is described by the author and definite means of preventing the phenomena of wheel wabble, shimmy and vibratory movements of the radiator, head-lamps and fenders are set forth. Early investigation showed that the problem involved not only the unsprung portions of the car but also the structural arrangement of the frame and the body. Chassis-dynamometer tests revealed a nodal point of zero torsional vibration approximately at a plane through the front seat but varying with different cars and body types, the forward portion of the chassis vibrating torsionally about the longitudinal axis in opposite phase to the rear portion. Experiments rather conclusively proved that damping is needed in the frame and body.
Technical Paper

Gaging Airplane-Engine Performance

1930-01-01
300036
WHILE virtually all aircraft builders agree in placing reliability as the most important factor in gaging engine performance, from there on agreement is lacking. The author believes that all factors exclusive of reliability can be evaluated so as to provide a good basis for choosing an engine. These factors include durability, which despite the opinion of some aeronautic engineers is not synonymous with reliability; weight per horsepower of the complete powerplant, including radiators and cowling; head resistance; fuel consumption; and first cost. The effect of changes in engine weight on operating cost are discussed, the text being supplemented by tables showing the effect of increased engine-weight, operating cost and the operation-expense items that are affected.
Technical Paper

Development of the Franklin Direct Air-Cooled Engine

1931-01-01
310004
FEATURES of the design of the various cylinders built by the Franklin organization in its development program leading up to the present design are discussed in this paper. The relation of waste heat to cooling-fin areas and cooling-blast velocities is shown and discussed for cylinders up to 3½-in. bore. Characteristics of the cooling system, including fan, fan housing and air housings, are discussed at length, and the authors contend that no more power, if as much, will be absorbed in the cooling system as in that of the indirect air-cooled engine. Results of tests showing the ability of the engine to cool under the severest conditions of load and temperature are given. Since the quietness of any engine is dependent upon constant valve-clearances, the authors describe in detail the method followed in the Franklin design to maintain at less than 0.003 in. any variation in clearance. A careful analysis is made for each part in the valve-gear mechanism that is affected by expansion.
Technical Paper

Reducing Horsepower and Noise of Automotive Cooling-Fans

1931-01-01
310014
STATING the automotive cooling-fan problem as being constituted of the delivery of more air, decrease of fan horsepower, reduction of fan noise so that it is comparable with or less than other powerplant noises and the installation of the fan in a restricted space, the author describes the testing apparatus and method used in analyzing the subject. Fan speeds and the most effective number of blades are then considered, followed by analyses of fan diameter and pitch and curvature of fan blades. The manner in which air is discharged from the fan and the adaptation of a fan to an automobile are also discussed. Following statements concerning the desirable number of fan blades and blade spacing, noise characteristics of fans are analyzed in detail as a preface to the author's consideration of means of reducing fan noise, and a summary listing the conclusions reached as a result of the study is appended.
X