Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Introduction to Commercial and Off-Road Vehicle Cooling Airflow Systems

Vehicle functional requirements, emission regulations, and thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Given the expected increase in emission-related heat rejection, suppliers and vehicle manufacturers must work together as partners in the design, selection, and packaging of cooling system components. An understanding and appreciation of airflow integration issues and vehicle-level trade-offs that effect system performance are important to the team effort. The severe duty cycles, minimal ram air, and sometimes unconventional package layouts present unique challenges.
Collection

Vehicle Aerodynamics, 2011

2011-04-12
The 28 papers in this technical paper collection cover the aerodynamics development of vehicles or vehicle subsystems. Many papers discuss the utilization of both experimental and computational tools during the development phase.
Collection

Vehicle Aerodynamics, 2012

2012-04-13
The 32 papers in this technical paper collection discuss vehicle aerodynamics. Topics covered include vehicle cooling-drag, aerodynamic effects of different tire models, development of the Tesla Model S, experimental test facilities and adjustments, CFD validation and application, heavy truck aerodynamics, and more. The 32 papers in this technical paper collection discuss vehicle aerodynamics. Topics covered include vehicle cooling-drag, aerodynamic effects of different tire models, development of the Tesla Model S, experimental test facilities and adjustments, CFD validation and application, heavy truck aerodynamics, and more.
Collection

Vehicle Aerodynamics, 2014

2014-04-01
This technical paper collection covers vehicle aerodynamic development, drag reduction and fuel economy, handling and stability, cooling flows, surface soiling and water management, vehicle internal environment, tyre aerodynamics and modelling, aeroacoustics, structural response to aerodynamic loading, simulating the on-road environment, onset flow turbulence, unsteady aerodynamics, fundamental flow structures, new test methods and facilities, new applications of computational fluid dynamics simulation, competition vehicle aerodynamics.
Collection

Vehicle Aerodynamics, 2017

2017-03-28
Vehicle aerodynamic development, drag reduction and fuel economy, handling and stability, cooling flows, surface soiling and water management, vehicle internal environment, tyre aerodynamics and modelling, aeroacoustics, structural response to aerodynamic loading, simulating the on-road environment, onset flow turbulence, unsteady aerodynamics, fundamental flow structures, new test methods and facilities, new applications of computational fluid dynamics simulation, competition vehicle aerodynamics.
Video

Neural Network-based Optimal Control for Advanced Vehicular Thermal Management Systems

2011-12-05
Advanced vehicular thermal management system can improve engine performance, minimize fuel consumption, and reduce emissions by harmoniously operating computer-controlled servomotor components. In this paper, a neural network-based optimal control strategy is proposed to regulate the engine temperature through the advanced cooling system. Presenter Asma Al Tamimi, Hashemite University
Video

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-11-29
Today CFD is an important tool for engineers in the automotive industry who model and simulate fluid flow. For the complex field of Underhood Thermal Management, CFD has become a very important tool to engineer the cooling airflow process in the engine bay of vehicles. Presenter Peter Gullberg, Chalmers University of Technology
Video

The New Audi A6/A7 Family - Aerodynamic Development of Different Body Types on One Platform

2011-11-17
The presentation describes the aerodynamic development and optimization process of the three different new models of the Audi A6/A7 family. The body types of these three models represent the three classic aerodynamic body types squareback, notchback and fastback. A short introduction of the flow structures of these different body types is given and their effect on the vehicle aerodynamic is described. In order to achieve good aerodynamic performance, the integration into the development process of the knowledge about these flow phenomena and the breakdown of the aerodynamic resistance into its components friction- and pressure drag as well as the induced drag is very important. The presentation illustrates how this is realized within the aerodynamic development process at Audi. It describes how the results of CFD simulations are combined with wind tunnel measurements and how the information about the different flow phenomena were used to achieve an aerodynamic improvement.
Video

Ice Phobic Coatings for Control and Covered Surfaces

2012-03-14
Silicones have been utilized in multiple industries in the last 50 years and their applications are still expanding as technology grows. Ice phobic coatings, as an example, have been utilized on lock walls, navigation channels, wind turbines, hydropower intakes, and aircraft. Without protection these applications have a high risk of failure in the functions they perform. For example, ice build up on an aircraft?s aerodynamic surfaces increases drag which reduces lift during flight operations. Utilizing a silicone ice phobic coating significantly reduces the adhesion of ice to aerodynamic surfaces. Compared to other polymeric materials, silicones are known for their broad operating temperature range and lend themselves to excellent performance in a variety of harsh environments. Especially in low temperatures where ice adhesion is a concern, silicones retain their elastomeric physical properties and low modulus.
Video

Development of Scratch Resistant Clear Coat for Automotive

2012-05-23
Scratch resistance is one of the most important customer requirements for automotive painting. Scratches occur as a result of a load being imposed on a paint film, which then destroys or deforms it. In order to improve the scratch resistance properties of clear coat, a specially developed molecular that act to accelerate closslinking reaction was added to the clear coat main resin. This developed molecular facilitates closslinking between multiple molecules and creates an unprecedentedly fine molecular structure. The result is a soft, highly elastic, and durable clear coat with improved resistance to light and acid as well as enhanced deformation recovery properties. It requires no special maintenance, prevents luster degradation caused by surface scratches and helps to prolong new-car color and gloss. Developmental Clear Coat is introduced into the flagship of the Lexus range - the LS as Self-restoring Coat in 2009. Presenter Junya Ogawa, Developmental Center
Video

Eco+ Solutions in High Performance Plastics from DSM for Automotive.

2012-05-22
DSM will present various application solutions in High Performance Plastics enabling to significant weight or friction reduction and thus to reduced fuel consumption and/or emission levels, and on top of that to lower system costs. Typical Eco+ Solutions Examples to be presented are: - Friction Reduction: Nylon 46 in chain tensioners yielding up to 1 % fuel reduction - Weight Reduction (metal-to-plastic conversion): Nylon 46 with long term temperature resistance upto 230 C in turbo components, Nylon 6 in oil pans/sumps, PET in plastic precision parts, Nylon 46 in gears, many other examples - Electrification: Nylon 46 in start/stop and e-motor components, TPC in HV cables - System Cost optimization: High Flow PA6 in various components, TPC in Brake Tubes - Improved LCA: biobased materials as PA410 and TPC-Eco Typical Application Solutions concern: air induction systems, engine and transmission components, electrical systems, structural&safety parts.
Video

5000 Hours Aging of THERBAN® (HNBR) Elastomers in an Aggressive Biodiesel Blend

2012-05-23
TERBAN® hydrogenated nitrile rubber (HNBR) is a specialty elastomer used in demanding engineering applications such as the automotive, heavy duty, and industrial markets. It has excellent combination of heat, oil and abrasion resistance in addition to its high mechanical strength, very good dynamic and sealing properties. This paper will present data on aging HNBR for five thousand hours in an aggressive and un-stabilized B30A biodiesel fuel blend (70% ULSD, 30% SME, and an aggressive additive package) and explore the effect of HNBR polymer properties and vulcanizate composition on the performance in such fuel blends. Presenter Victor Nasreddine
Video

High Speed Machining of CFRP Parts

2012-03-16
High Speed Machining of CFRP Parts Investigation of the influence of new geometries, cutting datas and coolant capabilities on the surface finish of CFRP parts. State of the art: Different CFRP grades and machining conditions make geometry adjustments to the tool necessary. Mechanical failures through machining operations can be avoided in most of the cases. New unidirectional CFRP grades and dry machining processes again lead to machining problems. This study investigates new geometries to avoid heat damage with dry maching and air coolant in case of unidirectional CFRP. With help of a thermo camera and the surface investigation with a scanning electron microscope, heat damage can be analysed and therefore new geometries can be developed and tested. Target is to develop a new multi purpose CFRP geometry to meet the requirements of the future. The reduction of different geometries used leads to major cost savings. Presenter Ingo von Puttkamer, Guhring oHG
Standard

Snowcompressor

2017-07-28
WIP
ARP8000
This SAE Aerospace Recommended Practice (ARP) document covers the requirements for a Snowcompressor with carrier vehicle used to clear snow from airport operational areas by compressing the volume of collected snow into smaller volumes for loading into a hauling/dump truck or for depositing reduced-volume windrows for snow banking. The term carrier vehicle represents the various self-propelled prime movers that provide the power necessary to move snow and ice control equipment during winter operations. For two-stage rotary plows that primarily are used to cast heavy concentrations of snow away from airport operational areas such as runways and taxiways, see ARP5539.
Standard

Glycol Recovery Vehicle (GRV) – Self-Propelled

2017-06-12
WIP
ARP6954
This SAE Aerospace Resource Document (ARD) document covers the requirements for a self-propelled GRV, intended for use at airports to collect spent aircraft de-icing fluid (ADF) from the surface of de-icing areas. This unit will recover de-icing fluid from the surface, which will be stored in a containment unit on the vehicle. The GRV must be capable of night and day operations in all weather conditions, as required.
Training / Education

Introduction to Cooling Airflow Systems Web Seminar RePlay

Anytime
Vehicle functional requirements, diesel emission regulations, and subsystem thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Severe duty cycles, minimal ram air, fouling, and sometimes unconventional package layouts present unique challenges to the designer. This course introduces many airflow integration issues and vehicle-level trade-offs that effect system performance and drive the design. The goal of this course is to introduce engineers and managers to the basic principles of diesel cooling airflow systems for commercial and off-road vehicles.
Technical Paper

Numerical Investigation of Narrow-Band Noise Generation by Automotive Cooling Fans

2020-09-30
2020-01-1513
Axial cooling fans are commonly used in electric vehicles to cool batteries with high heating load. One drawback of the cooling fans is the high aeroacoustic noise level resulting from the fan blades and the obstacles facing the airflow. To create a comfortable cabin environment in the vehicle, and to reduce exterior noise emission, a low-noise installation design of the axial fan is required. The purpose of the project is to develop an efficient computational aeroacoustics (CAA) simulation process to assist the cooling-fan installation design. This paper reports the current progress of the development, where the narrow-band components of the fan noise is focused on. Two methods are used to compute the noise source. In the first method the source is computed from the flow field obtained using the unsteady Reynolds-averaged Navier-Stokes equations (unsteady RANS, or URANS) model.
Standard

Ice Melting Test Method for Runway Deicing Product

2020-05-01
WIP
AS6170
This test method provides stakeholders (runway deicing product manufacturers, users, regulators, and airport authorities) with relative ice melting capacity of runway deicing products, by measuring the amount of ice melted as a function of time. Such runway deicing products are often also used on taxiways and other paved areas.
X