Refine Your Search

Search Results

Standard

Sintered Powder Metal Parts: Ferrous

2018-08-24
CURRENT
J471_201808
Powder metal (P/M) parts are manufactured by pressing metal powders to the required shape in a precision die and sintering to produce metallurgical bonds between the particles, thus generating the appropriate mechanical properties. The shape and mechanical properties of the part may be subsequently modified by repressing or by conventional methods such. as machining and/or heat treating. While powder metallurgy embraces a number of fields wherein metal powders may be used as raw materials, this standard is concerned primarily with information relating to mechanical components and bearings produced from iron-base materials.
Standard

SINTERED POWDER METAL PARTS: FERROUS

1973-08-01
HISTORICAL
J471_197308
Powder metal (P/M) parts are manufactured by pressing metal powders to the required shape in a precision die and sintering to produce metallurgical bonds between the particles, thus generating the appropriate mechanical properties. The shape and mechanical properties of the part may be subsequently modified by repressing or by conventional methods such. as machining and/or heat treating. While powder metallurgy embraces a number of fields wherein metal powders may be used as raw materials, this standard is concerned primarily with information relating to mechanical components and bearings produced from iron-base materials.
Standard

Magnetic Particle Inspection

2018-01-10
CURRENT
J420_201801
The scope of this SAE Information Report is to provide general information relative to the nature and use of magnetic particles for nondestructive testing. The document is not intended to provide detailed technical information, but will serve as an introduction to the theory and capabilities of magnetic particle testing, and as a guide to more extensive references.
Standard

MAGNETIC PARTICLE INSPECTION

1991-03-01
HISTORICAL
J420_199103
The scope of this SAE Information Report is to provide general information relative to the nature and use of magnetic particles for nondestructive testing. The document is not intended to provide detailed technical information, but will serve as an introduction to the theory and capabilities of magnetic particle testing, and as a guide to more extensive references.
Standard

Anodized Aluminum Automotive Parts

1976-04-01
HISTORICAL
J399A_197604
Automotive parts can be fabricated from either coiled sheet, flat sheet or extruded shapes. Alloy selection is governed by finish requirements, forming characteristics, and mechanical properties. Bright anodizing alloys 5657 and 5252 sheet provide a high luster and are preferred for trim which can be formed from an intermediate temper, such as H25. Bright anodizing alloy 5457 is used for parts which require high elongation and a fully annealed ('0') temper. Alloy 6463 is a medium strength bright anodizing extrusion alloy; Alloy X7016 is a high strength bright anodizing extrusion alloy primarily suited for bumper applications. To satisfy anti-glare requirements for certain trim applications, sheet alloy 5205 and extrusion alloy 6063 are capable of providing the desired low-gloss anodized finish.
Standard

Oil-Tempered Carbon-Steel Valve Spring Quality Wire and Springs

1988-12-01
HISTORICAL
J351_198812
This SAE Recommended Practice covers the physical and chemical requirements of oil- tempered carbon-steel valve spring quality wire used for the manufacture of engine valve springs and other springs requiring high-fatigue properties. This document also covers the processing requirements of springs fabricated from this wire.
Standard

Oil-Tempered Carbon-Steel Valve Spring Quality Wire and Springs

1994-06-01
HISTORICAL
J351_199406
This SAE Recommended Practice covers the physical and chemical requirements of oil- tempered carbon-steel valve spring quality wire used for the manufacture of engine valve springs and other springs requiring high-fatigue properties. This document also covers the processing requirements of springs fabricated from this wire.
Standard

Oil-Tempered Carbon-Steel Valve Spring Quality Wire and Springs

1998-06-01
CURRENT
J351_199806
This SAE Recommended Practice covers the physical and chemical requirements of oil- tempered carbon-steel valve spring quality wire used for the manufacture of engine valve springs and other springs requiring high-fatigue properties. This document also covers the processing requirements of springs fabricated from this wire.
Standard

Detection of Surface Imperfections In Ferrous Rods, Bars, Tubes, and Wires

2017-12-20
CURRENT
J349_201712
This SAE Information Report provides a summary of several methods that are available for detecting, and in some instances detecting and measuring, surface imperfections in rods, bars, tubes, and wires. References relating to detailed technical information and to specific applications are enumerated in 2.2.
Standard

Oil-Tempered Chromium-Vanadium Valve Spring Quality Wire and Springs

1994-06-01
HISTORICAL
J132_199406
This SAE Recommended Practice covers the mechanical and chemical requirements of oil-tempered chromium-vanadium valve spring quality wire used for the manufacture of engine valve springs and other springs used at moderately elevated temperatures and requiring high fatigue properties. It also covers the processing requirements of spring fabricated from this wire.
Standard

Oil-Tempered Chromium-Vanadium Valve Spring Quality Wire and springs

1988-12-01
HISTORICAL
J132_198812
This SAE Recommended Practice covers the mechanical and chemical requirements of oil-tempered chromium-vanadium valve spring quality wire used for the manufacture of engine valve springs and other springs used at moderately elevated temperatures and requiring high fatigue properties. It also covers the processing requirements of spring fabricated from this wire.
Standard

Oil-Tempered Chromium-Vanadium Valve Spring Quality Wire and springs

1998-06-01
CURRENT
J132_199806
This SAE Recommended Practice covers the mechanical and chemical requirements of oil-tempered chromium-vanadium valve spring quality wire used for the manufacture of engine valve springs and other springs used at moderately elevated temperatures and requiring high fatigue properties. It also covers the processing requirements of spring fabricated from this wire.
Standard

Valve Guide Information Report

2017-12-20
CURRENT
J1682_201712
This SAE Information Report provides: a Types of valve guides and their nomenclature b Valve guide alloy designations and their chemistries c Valve guide alloy metallurgy d Typical mechanical and physical properties of guide alloys e Typical dimensional tolerances of valve guides and their counterbores f Recommended interference fits g Installation procedures h Application considerations
Standard

VALVE GUIDE INFORMATION REPORT

1993-09-10
HISTORICAL
J1682_199309
This SAE Information Report provides: a Types of valve guides and their nomenclature b Valve guide alloy designations and their chemistries c Valve guide alloy metallurgy d Typical mechanical and physical properties of guide alloys e Typical dimensional tolerances of valve guides and their counterbores f Recommended interference fits g Installation procedures h Application considerations
Standard

Hard Drawn Carbon Steel Valve Spring Quality Wire and Springs

1988-12-01
HISTORICAL
J172_198812
This SAE Recommended Practice covers the mechanical and chemical requirements of the best quality hard drawn carbon steel spring wire used for the manufacture of engine valve springs and other springs requiring high fatigue properties. It also covers the basic material and processing requirements of springs fabricated from this wire.
Standard

MICROSCOPIC DETERMINATION OF INCLUSIONS IN STEELS

1983-12-01
HISTORICAL
J422_198312
This recommended microscopic practice for evaluating the inclusion content in steel has been developed as a practical method of quantitatively determining the degree of cleanliness of steel. This method has been established as a reasonable control for steel mill operations and acceptance for production manufacturing. It has been widely accepted for carbon and alloy steel bars, billets, and slabs. Exceptions are resulfurized grades which are outside the limits of these photomicrographs and the high carbon bearing quality steels which are generally classified using ASTM E 45-60T, Method A, Jernkontoret Charts.
X