Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Fundamentals of Electric Machines for Automotive Applications

As the electrification of automobiles is on the rise, it is imperative that the capabilities and limits of the associated devices and systems be understood at a higher level than previously considered adequate. For example, the Tesla Model S has 62 electric machines while the Model X has 70! They propel the vehicle and provide comfort too. Their design must reflect the worst case operating scenarios, duty cycles, environment, country of use and its standards, etc.
Training / Education

Application Development of Electric Vehicles and Hybrid Electric Vehicles Balancing Economic Objectives and Technical Requirements

2019-10-29
This course is offered in China only. More and more stringent emission and fuel consumption regulations are pushing the automotive industry towards electrified powertrain and electrified vehicles. This is particularly evident in China, where there is an increased demand for electric (EV) and hybrid electric vehicles (HEV). Infrastructure is being built across the country for convenient charging. It must now be determined how to meet the technical targets for EV/HEV regulations under economic constraints and how to best develop the major ePowertrain components (battery and motor).
Training / Education

Aviation Safety Engineer Job Functions

2019-08-12
The skills and knowledge gained in this workshop will enable students to carry out regulatory responsibilities related to the administration of the Aircraft Certification and Continued Operational Safety. This course content provides the Civil Aviation Safety Engineers (Systems - Electrical) with the knowledge and skills to conduct oversight of aviation safety, aircraft certification and Continued Operational Safety.
Training / Education

ISO 26262 Functional Safety – Road Vehicles Focus on Second Edition Changes

2019-05-07
Functional safety is of utmost importance in the development of safety-critical automotive systems, especially with the introduction of driver assist and automated driving systems. Introduced in 2011 and now issued as a second edition, the ISO 26262: Functional Safety - Road Vehicles Standard has become the de-facto automotive industry functional safety standard, applying to all activities during the safety life cycle of system development.
Training / Education

Advanced Power Electronics in Automotive Applications

2019-05-07
It’s estimated that over 40% of the on-board components in the entire car are electronic based and that percentage is expected to rise with the growth of hybrid and autonomous vehicles and will continue to be an enabling technology for a wide range of future loads with new features and functions. From lighting, infotainment, and safety systems, to powertrain systems and beyond, power electronics has become one of the most important areas of the automotive subsystem and bringing this technology to non-electrical engineers will help bridge a knowledge gap that will drive teams forward quicker and more efficiently.
Training / Education

Safe Handling of High Voltage Battery Systems

2019-05-02
Electric and hybrid vehicles are becoming more visible on today's roadways and the automotive companies are working hard to make these vehicles as transparent as possible to enhance consumer acceptance. The battery system forms a key part of any of these vehicles and is probably the least understood. With practically no moving parts the battery systems show no visible or audible warning of any latent dangers. This seminar will introduce participants to the risks encountered in handling high voltage battery systems and their component parts.
Training / Education

Introduction to Hybrid and Electric Vehicle Battery Systems

2019-04-30
Driven by the need for lower emissions, better fuel economy and higher efficiency, hybrid vehicles are appearing in many different configurations on today's roadways. While the powertrain components such as the drive motor, motor controller and cooling system are somewhat familiar to the automotive industry, the battery systems are a relatively unfamiliar aspect. This seminar will introduce participants to the concepts of hybrid vehicles, their missions and the role of batteries in fulfilling those requirements.
Standard

Marine Stern Drive and Inboard Spark-Ignition Engine On-Board Diagnostics Implementation Guide

2012-04-13
HISTORICAL
J1939/5_201204
This document describes the application of the SAE J1939 recommended practices for compliance with on-board diagnostic malfunction detection system requirements for marine sterndrive and inboard spark ignition engines, as mandated by the California Air Resources Board (CARB). These Otto-cycle engines are not derived from automotive diesel-cycle engines.
Standard

Life Cycle Testing of Electric Vehicle Battery Modules

1997-01-01
HISTORICAL
J2288_199701
This SAE Recommended Practice defines a standardized test method to determine the expected service life, in cycles, of electric vehicle battery modules. It is based on a set of nominal or baseline operating conditions in order to characterize the expected degradation in electrical performance as a function of life and to identify relevant failure mechanisms where possible. Accelerated aging is not included in the scope of this procedure, although the time compression resulting from continuous testing may unintentionally accelerate battery degradation unless test conditions are carefully controlled. The process used to define a test matrix of accelerated aging conditions based on failure mechanisms, and to establish statistical confidence levels for the results, is considered beyond the scope of this document. Because the intent is to use standard testing conditions whenever possible, results from the evaluation of different technologies should be comparable.
Standard

Connections for On-Board Road Vehicle Electrical Wiring Harnesses--Part 2: Tests and General Performance Requirements

2005-02-02
HISTORICAL
J2223/2_200502
This SAE Standard defines tests methods and general performance requirements of single-pole and multiple connectors for on-board electrical wiring harnesses of road vehicles. These requirements are not intended for connections internal to electronic devices. This document applies to connectors designed to be disconnected after mounting in the vehicle in the case of repair and/or maintenance.
Standard

Connections for On-Board Road Vehicle Electrical Wiring Harnesses - Part 2: Tests and General Performance Requirements

2018-10-22
WIP
J2223/2
Procedures included within this specification are intended to cover performance testing at all phases of development, production, and field analysis of electrical terminals, connectors, and components that constitute the electrical connection systems in low voltage (0 - 20 VDC) road vehicle applications. These procedures are only applicable to terminals used for In-Line, Header, and Device Connector systems with and without Shorting Bars. They are not applicable to Edge Board connector systems, greater than 20 VAC or DC, or to eyelet type terminals.
Standard

Connections for On-Board Road Vehicle Electrical Wiring Harnesses—Part 2: Tests and General Performance Requirements

2011-02-18
CURRENT
J2223/2_201102
Procedures included within this specification are intended to cover performance testing at all phases of development, production, and field analysis of electrical terminals, connectors, and components that constitute the electrical connection systems in low voltage (0 - 20 VDC) road vehicle applications. These procedures are only applicable to terminals used for In-Line, Header, and Device Connector systems with and without Shorting Bars. They are not applicable to Edge Board connector systems, > 20 VAC or DC, or to eyelet type terminals.
Standard

Life Cycle Testing of Electric Vehicle Battery Modules

2008-06-30
CURRENT
J2288_200806
This SAE Recommended Practice defines a standardized test method to determine the expected service life, in cycles, of electric vehicle battery modules. It is based on a set of nominal or baseline operating conditions in order to characterize the expected degradation in electrical performance as a function of life and to identify relevant failure mechanisms where possible. Accelerated aging is not included in the scope of this procedure, although the time compression resulting from continuous testing may unintentionally accelerate battery degradation unless test conditions are carefully controlled. The process used to define a test matrix of accelerated aging conditions based on failure mechanisms, and to establish statistical confidence levels for the results, is considered beyond the scope of this document. Because the intent is to use standard testing conditions whenever possible, results from the evaluation of different technologies should be comparable.
Standard

Marine Stern Drive and Inboard Spark-Ignition Engine On-Board Diagnostics Implementation Guide

2017-10-13
CURRENT
J1939/5_201710
This document describes the application of the SAE J1939 recommended practices for compliance with on-board diagnostic malfunction detection system requirements for marine sterndrive and inboard spark ignition engines, as mandated by the California Air Resources Board (CARB). These Otto-cycle engines are not derived from automotive diesel-cycle engines.
Standard

Primary Single Phase Nominal 120 VAC Wiring Distribution Assembly Design - Truck and Bus

2008-01-14
HISTORICAL
J2698_200801
1.1 This SAE Recommended Practice covers the design and application of primary on-board wiring distribution system harnessing for surface vehicles. This document is intended for single phase nominal 120 VAC circuits that provide power to truck sleeper cab hotel loads so that they may operate with the main propulsion engine turned off. The power supply comes from alternative sources such as land-based grid power, DC-AC inverters and auxiliary power generators. The circuits may also provide power to improve vehicle performance through charging batteries or operating cold-weather starting aids. 1.2 This document is not intended to provide guidance for electric or hybrid electric vehicle wiring circuits. Refer to SAE J1673 for high voltage automotive wiring assembly design. 1.3 Engine block heaters are 120 VAC devices that are used on a multitude of vehicle platforms in addition to trucks with sleeper cabs. Generally, the engine block heater circuit is wired independent of hotel loads.
Standard

Primary Single Phase Nominal 120 VAC Wiring Distribution Assembly Design—Truck and Bus

2018-10-04
CURRENT
J2698_201810
This SAE Recommended Practice covers the design and application of primary on-board wiring distribution system harnessing for surface vehicles. This document is intended for single phase nominal 120 VAC circuits that provide power to truck sleeper cab hotel loads so that they may operate with the main propulsion engine turned off. The power supply comes from alternative sources such as land-based grid power, DC-AC inverters and auxiliary power generators. The circuits may also provide power to improve vehicle performance through charging batteries or operating cold-weather starting aids.
Standard

Primary Single Phase Nominal 120 VAC Wiring Distribution Assembly Design—Truck and Bus

2014-11-24
HISTORICAL
J2698_201411
This SAE Recommended Practice covers the design and application of primary on-board wiring distribution system harnessing for surface vehicles. This document is intended for single phase nominal 120 VAC circuits that provide power to truck sleeper cab hotel loads so that they may operate with the main propulsion engine turned off. The power supply comes from alternative sources such as land-based grid power, DC-AC inverters and auxiliary power generators. The circuits may also provide power to improve vehicle performance through charging batteries or operating cold-weather starting aids.
X