Refine Your Search

Topic

Search Results

Standard

Pi-Bus Handbook

1996-01-01
HISTORICAL
AIR4903
This section defines the scope of the document, provides a brief history of the Pi-Bus, discusses key features of the Pi-Bus, and provides an overview of the operation of the Pi-Bus. This document is a handbook intended to accompany AS4710 Pi-Bus standard. The purpose of this document is to provide information to aid users of the Pi-Bus, whether they be implementors of Pi-Bus controllers, architects of systems considering using the Pi-Bus, or programmers who must develop applications in a system which uses the Pi-Bus as the backplane communications bus. This document also provides rationale for many of the Pi-Bus requirements as defined in AS4710 and a discussion of potential enhancements that are being considered for the Pi-Bus.
Standard

Pi-Bus Handbook

2012-05-03
CURRENT
AIR4903A
This section defines the scope of the document, provides a brief history of the Pi-Bus, discusses key features of the Pi-Bus, and provides an overview of the operation of the Pi-Bus. This document is a handbook intended to accompany AS4710 Pi-Bus standard. The purpose of this document is to provide information to aid users of the Pi-Bus, whether they be implementors of Pi-Bus controllers, architects of systems considering using the Pi-Bus, or programmers who must develop applications in a system which uses the Pi-Bus as the backplane communications bus. This document also provides rationale for many of the Pi-Bus requirements as defined in AS4710 and a discussion of potential enhancements that are being considered for the Pi-Bus.
Standard

Handbook For The SAE AS4075 High Speed Ring Bus Standard

1995-02-01
HISTORICAL
AIR4289
This Handbook has been prepared by the Ring Implementation Task Group of the SAE AS-2 Committee, and is intended to support AS4075 by providing explanation of the standard itself and guidance on its use. The principal objective in the preparation of a standard is to provide a statement of operational and performance requirements, and an unambiguous definition of the functions to be realized in any implementation, primarily from the view point of interoperability. While efforts have been made within the AS4075 standard to provide a readable general description of the HSRB, detailed explanations, rationale and guidance to the use are incompatible with the purpose and, indeed, the format of a standard. Accordingly, this Handbook contains a paragraph-by-paragraph explanation of the main sections of the standard, and a discussion of application and implementation issues.
Standard

Handbook for the SAE AS4075 High Speed Ring Bus Standard

2012-05-03
CURRENT
AIR4289A
This Handbook has been prepared by the Ring Implementation Task Group of the SAE AS-2 Committee, and is intended to support AS4075 by providing explanation of the standard itself and guidance on its use. The principal objective in the preparation of a standard is to provide a statement of operational and performance requirements, and an unambiguous definition of the functions to be realized in any implementation, primarily from the view point of interoperability. While efforts have been made within the AS4075 standard to provide a readable general description of the HSRB, detailed explanations, rationale and guidance to the use are incompatible with the purpose and, indeed, the format of a standard. Accordingly, this Handbook contains a paragraph-by-paragraph explanation of the main sections of the standard, and a discussion of application and implementation issues.
Standard

MODULAR AVIONICS BACKPLANE FUNCTIONAL REQUIREMENTS AND CONSENSUS ITEMS (MABFRACI)

1996-11-01
HISTORICAL
AIR4980
The original purpose of this document was to establish interface requirements for modular avionics backplanes to be prototyped up to 1995. The document was issued as ARD50011 in September 1992. It is being reissued as an SAE Aerospace Information Report (AIR) in order to: a Preserve the requirements for more than 2 years b Support design of retrofits and avionics systems to be fielded in the years 1995 to 2000 c Provide a baseline for updating the requirements of future integrated systems These requirements were and are intended to promote standardization of modular avionic backplane interfaces. These requirements have been driven predominantly, but not exclusively, by aerospace type military platforms.
Standard

Modular Avionics Backplane Functional Requirements and Consensus Items (MABFRACI)

2012-05-03
CURRENT
AIR4980A
The original purpose of this document was to establish interface requirements for modular avionics backplanes to be prototyped up to 1995. The document was issued as ARD50011 in September 1992. It is being reissued as an SAE Aerospace Information Report (AIR) in order to: a Preserve the requirements for more than 2 years b Support design of retrofits and avionics systems to be fielded in the years 1995 to 2000 c Provide a baseline for updating the requirements of future integrated systems These requirements were and are intended to promote standardization of modular avionic backplane interfaces. These requirements have been driven predominantly, but not exclusively, by aerospace type military platforms.
Standard

POWER CONTROLLERS: SIGNAL INTERFACE APPLICATIONS AND CONSIDERATIONS

1991-09-03
HISTORICAL
AIR4272
This AIR is applicable to SSPCs, EMPCs, and hybrid power controllers. It covers the control, status, BIT, etc., interfaces, other than electrical power. For the purpose of this document, a power controller shall have, as a minimum, the following characteristics: a Power switching function b Control input c Overload protection d Status feedback To accomplish the goals set forth in the Foreword, the interfaces are first categorized by function. Next, examples of actual implementations are given.
Standard

Digital Time Division Command/Response Multiplex Data Bus

1995-11-01
HISTORICAL
AS15531
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration, that is functionally equivalent to MIL-STD-1553B with Notice 2. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
Standard

Digital Time Division Command/Response Multiplex Data Bus

2017-03-21
CURRENT
AS15531A
This SAE Aerospace Standard (AS) contains requirements for a digital time division command/response multiplex data bus, for use in systems integration, that is functionally equivalent to MIL-STD-1553B with Notice 2. Even with the use of this document, differences may exist between multiplex data buses in different system applications due to particular application requirements and the options allowed in this document. The system designer must recognize this fact and design the multiplex bus controller (BC) hardware and software to accommodate such differences. These designer selected options must exist to allow the necessary flexibility in the design of specific multiplex systems in order to provide for the control mechanism, architectural redundancy, degradation concept, and traffic patterns peculiar to the specific application requirements.
Standard

Validation Test Plan for the Digital Time Division Command/Response Multiplex Data Bus Remote Terminals

2017-08-10
CURRENT
AS4111A
This SAE Aerospace Standard (AS) contains a sample test plan for AS15531 or MIL-STD-1553B Remote Terminals (RT) that may serve several different purposes. This document is intended to be contractually binding when specifically called out in a specification, Statement of Work (SOW), or when required by a Data Item Description (DID). Any and all contractor changes, alterations, or testing deviations to this section shall be separately listed for easy review.
Standard

Validation Test Plan for the Digital Time Division Command/Response Multiplex Data Bus Remote Terminals

1998-10-01
HISTORICAL
AS4111
This SAE Aerospace Standard (AS) contains a sample test plan for AS15531 or MIL-STD-1553B Remote Terminals (RT) that may serve several different purposes. This document is intended to be contractually binding when specifically called out in a specification, Statement of Work (SOW), or when required by a Data Item Description (DID). Any and all contractor changes, alterations, or testing deviations to this section shall be separately listed for easy review.
Standard

Verification Methods for AS5653 Network Controller, Network Terminal, and Switch Physical Layer

2018-08-13
CURRENT
AS6260
This document was prepared by the SAE AS-1A2 Committee to establish techniques for verifying that Network Controllers (NCs), Network Terminals (NTs), switches, cables, and connectors comply with the physical layer requirements specified in AS5653B. Note that this verification document only verifies the specific requirements from AS5653B and does not verify all of the requirements invoked by documents that are referenced by AS5653B. The procuring authority may require further testing to verify the requirements not explicitly defined in AS5653B and in this verification document.
Standard

HIGH SPEED RING BUS (HSRB) STANDARD

1988-08-29
HISTORICAL
AS4075
A fault tolerant, real time high speed data communication standard is defined based on a ring topology and the use of a Token passing access method with distributed control. The requirements for the HSRB standard have been driven predominantly, but not exclusively, by military applications. Particular attention has been given to the need for low message latency, deterministic message priority and comprehensive reconfiguration capabilities. This document contains a definition of the semantics and protocol including delimiters, tokens, message priority, addressing, error detection and recovery schemes; and is written to be independent of bit rate and media. Parameters related to particular media and bit rates are defined in separate documents, the AS4075 slash sheets.
Standard

Type E-1 Electrical Media Interface Characteristics

2004-10-14
HISTORICAL
AS4074/3A
This slash sheet specifies the operational parameters and characteristics of a particular implementation of the SAE Linear, Token Passing Bus (LTPB) Interface Unit. This slash sheet defines the following: a The physical media interface: This slash sheet specifies the characteristics of the electrical interface to the physical bus media. b The minimum and maximum timing requirements for operation of this implementation of the LTPB. c The data coding used to encode and decode the data for transmission. d The default values to be loaded into the timers of the LTPB interface at power-up prior to intervention by the host processor.
X