Refine Your Search

Topic

Search Results

Standard

Megawatt Charging System for Electric Vehicles

2021-12-15
WIP
J3271
This document describes the megawatt-level DC charging system requirements for couplers/inlets, cables, cooling, communication and interoperability. The intended application is for commercial vehicles with larger battery packs requiring higher charging rates for moderate dwell time. A simplified analog safety signaling approach is used for connection-detection to guarantee de-energized state for unmated couplers with superimposed high speed data for EVSE-EV charging control and other value added services.
Standard

Dynamic Wireless Power Transfer for both Light and Heavy Duty Vehicles (SAE RP J2954/3)

2023-04-20
WIP
J2954/3
The SAE J2954 standard establishes an industry-wide specification that defines acceptable criteria for Light Duty EVs and SAE RP J2954/2 establishes the same for Heavy Duty. SAE RP SAE J2954. SAE RP J2954/3 establishes interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for dynamic wireless power transfer (D-WPT) of both light and heavy duty plug-in electric vehicles. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels as SAE J2954/1 & SAE J2954/2 with some variations. A standard for WPT based on these charge levels enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. SAE J2954/3 addresses unidirectional charging, from grid to vehicle; bidirectional energy transfer may be evaluated for a future standard.
Standard

xEV Labels to Assist First and Second Responders, and Others

2023-09-06
WIP
J3108
This recommended practice prescribes clear and consistent labeling methodology for communicating important xEV high voltage safety information. Examples of such information include identifying key high voltage system component locations and high voltage disabling points. These recommendations are based on current industry best practices identified by the responder community. Although this recommended practice is written for xEVs with high voltage systems, these recommendations can be applied to any vehicle type.
Standard

xEV Labels to Assist First and Second Responders, and Others

2017-03-02
CURRENT
J3108_201703
This recommended practice prescribes clear and consistent labeling methodology for communicating important xEV high voltage safety information. Examples of such information include identifying key high voltage system component locations and high voltage disabling points. These recommendations are based on current industry best practices identified by the responder community. Although this recommended practice is written for xEVs with high voltage systems, these recommendations can be applied to any vehicle type.
Standard

Electric Vehicle Charging Adapter Safety and OEM Qualified Device Designation

2023-12-01
WIP
J3400/1
This document covers the general physical, electrical, functional, and performance requirements for adapters connected to standards conforming conductive power transfer via handheld conductive coupler capable of transferring either DC or single-phase power using two current-carrying contacts. The focus is on defining the process to evaluate the suitability of adapters to SAE J3400 vehicle inlets.
Standard

Communication for Plug-in Vehicles as a Distributed Energy Source

2021-03-23
HISTORICAL
J2847/3_202103
This document applies to a plug-in electric vehicle (PEV) which is equipped with an onboard inverter and communicates using IEEE 2030.5-2018. It is a supplement to the SEP2 standard, which supports the use cases defined by SAE J2836/3. It provides guidance for the use of the SEP2 distributed energy resource function set with a PEV. It also provides guidance for the use of the SEP2 flow reservation function set, when used for discharging. It is not intended to be a comprehensive guide to the use of SEP2 in a PEV. Note that in this document, SEP2 is used interchangeably with IEEE 2030.5-2018.
Standard

Communication for Plug-in Vehicles as a Distributed Energy Resource

2013-12-10
HISTORICAL
J2847/3_201312
This document applies to a Plug-in Electric Vehicle (PEV) which is equipped with an onboard inverter and communicates using the Smart Energy Profile 2.0 Application Protocol (SEP2). It is a supplement to the SEP2 Standard, which supports the use cases defined by J2836/3™. It provides guidance for the use of the SEP2 Distributed Energy Resource Function Set with a PEV. It also provides guidance for the use of the SEP2 Flow Reservation Function Set, when used for discharging. It is not intended to be a comprehensive guide to the use of SEP2 in a PEV.
Standard

Performance Characterization of Electrified Powertrain Motor-drive Subsystem

2017-02-15
HISTORICAL
J2907_201702
This document was developed to provide a method of obtaining repeatable measurements that accurately reflects the performance of a propulsion electric drive subsystem, whose output is used in an electrified vehicle regardless of complexity or number of energy sources. The purpose is to provide a familiar and easy-to-understand performance rating. Whenever there is an opportunity for interpretation of the document, a good faith effort shall be made to obtain the typical in-service performance and characteristics and avoid finding the best possible performance under the best possible conditions. Intentional biasing of operating parameters or assembly tolerances to optimize performance for this test shall not be considered valid results in the scope of this document.
Standard

Performance Characterization of Electrified Powertrain Motor-Drive Subsystem

2018-02-12
HISTORICAL
J2907_201802
This document was developed to provide a method of obtaining repeatable measurements that accurately reflects the performance of a propulsion electric drive subsystem, whose output is used in an electrified vehicle regardless of complexity or number of energy sources. The purpose is to provide a familiar and easy-to-understand performance rating. Whenever there is an opportunity for interpretation of the document, a good faith effort shall be made to obtain the typical in-service performance and characteristics and avoid finding the best possible performance under the best possible conditions. Intentional biasing of operating parameters or assembly tolerances to optimize performance for this test shall not be considered valid results in the scope of this document.
Standard

Performance Characterization of Electrified Powertrain Motor-Drive Subsystem

2023-08-01
CURRENT
J2907_202308
This document was developed to provide a method of obtaining repeatable measurements that accurately reflects the performance of a propulsion electric drive subsystem, whose output is used in an electrified vehicle regardless of complexity or number of energy sources. The purpose is to provide a familiar and easy-to-understand performance rating. Whenever there is an opportunity for interpretation of the document, a good faith effort shall be made to obtain the typical in-service performance and characteristics and avoid finding the best possible performance under the best possible conditions. Intentional biasing of operating parameters or assembly tolerances to optimize performance for this test shall not be considered valid results in the scope of this document.
Standard

Standard Four-Letter Coding as an Identification Method for Alternative Fuel Vehicles

2024-03-01
CURRENT
J3108/1_202403
SAE J3108 RP provides fuel and hazard guidance for first and second responders of incidents associated with alternative fueled vehicles. The intent of this SAE J3108-1 RP is to remain with the limited number of seven intuitive and colored letters contained in each of the first two letter positions (72=49). However, the use of four letters plus nine digits (to not use either 0 or o) permits up to 1185921 unique identifiers (334) for future expansion. The RP is not intended to replace the standards for SAE J2990 format emergency response guide (ERG) created by automotive manufacturers for use at the scene of an emergency. Automotive OEMs are encouraged to reference this RP for industry design guidance when creating vehicle requirements and ERGs. This coding should be consistent with other vehicle badging with the goal of providing additional clarity.
Standard

Communication for Smart Charging of Plug-in Electric Vehicles using Smart Energy Profile 2.0

2013-11-05
HISTORICAL
J2847/1_201311
This document describes the details of the Smart Energy Profile 2.0 (SEP2.0) communication used to implement the functionality described in the SAE J2836/1™ use cases. Each use case subsection includes a description of the function provided, client device requirements, and sequence diagrams with description of the steps. Implementers are encouraged to consult the SEP2.0 Schema and Application Specification for further details. Where relevant, this document notes, but does formally specify, interactions between the vehicle and vehicle operator.
Standard

Communication for Smart Charging of Plug-in Electric Vehicles Using Smart Energy Profile 2.0

2019-08-20
CURRENT
J2847/1_201908
This document describes the details of the Smart Energy Profile 2.0 (SEP2.0) communication used to implement the functionality described in the SAE J2836-1 use cases. Each use case subsection includes a description of the function provided, client device requirements, and sequence diagrams with description of the steps. Implementers are encouraged to consult the SEP2.0 schema and application specification for further details. Where relevant, this document notes, but does formally specify, interactions between the vehicle and vehicle operator.
Standard

Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using Travel Survey Data

2019-06-25
WIP
J2841
The total fuel and energy consumption rates of a Plug-In Hybrid Electric Vehicle (PHEV) vary depending upon the distance driven. For PHEVs, the assumption is that operation starts in battery charge-depleting mode and eventually changes to battery charge-sustaining mode. Total distance between charge events determines how much of the driving is performed in each of the two fundamental modes. An equation describing the portion of driving in each mode is defined. Driving statistics from the National Highway Transportation Survey are used as inputs to the equation to provide an aggregate "Utility Factor" (UF) applied to the charge-depleting mode results.
Standard

Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using 2001 U.S. DOT National Household Travel Survey Data

2009-03-27
HISTORICAL
J2841_200903
This SAE Information Report establishes a “Utility Factor” (UF) curve and the method of generating this curve. The UF is used when combining test results from battery charge-depleting and charge-sustaining modes of a Plug-in Hybrid Electric Vehicle (PHEV). This document will define the UF curve(s) by using 2001 United States Department of Transportation (DOT) “National Household Travel Survey” data. The input is daily vehicle miles traveled, and the UF curve output is a percentage fraction that is applied to the charge-depleting mode results.
Standard

Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using Travel Survey Data

2010-09-21
CURRENT
J2841_201009
This SAE Information Report establishes a set of “Utility Factor” (UF) curves and the method for generating these curves. The UF is used when combining test results from battery charge-depleting and charge-sustaining modes of a Plug-in Hybrid Electric Vehicle (PHEV). Although any transportation survey data set can be used, this document will define the included UF curves by using the 2001 United States Department of Transportation (DOT) “National Household Travel Survey” and a supplementary dataset.
Standard

Use Cases for Diagnostic Communication for Plug-in Electric Vehicles

2017-06-26
HISTORICAL
J2836/4_201706
This SAE Surface Vehicle Technical Information Report, J2836/4, establishes diagnostic use cases between Plug-in Electric Vehicles (PEV) and the Electric Vehicle Supply Equipment (EVSE). As PEVs are deployed and include both Plug-In Hybrid Electric (PHEV) and Battery Electric (BEV) Vehicle variations, failures of the charging session between the EVSE and PEV may include diagnostics particular to the vehicle variations. This document describes the general information required for diagnostics and J2847/4 will include the detail messages to provide accurate information to the customer and/or service personnel to identify the source of the issue and assist in resolution. Existing vehicle diagnostics can also be added and included during this charging session regarding issues that have occurred or are imminent to the EVSE or PEV, to assist in resolution of these items.
Standard

Use Cases for Diagnostic Communication for Plug-in Electric Vehicles

2021-06-10
CURRENT
J2836/4_202106
This SAE Surface Vehicle Technical Information Report, SAE J2836/4, establishes diagnostic use cases between plug-in electric vehicles (PEV) and the electric vehicle supply equipment (EVSE). As PEVs are deployed and include both plug-in hybrid electric (PHEV) and battery electric (BEV) vehicle variations, failures of the charging session between the EVSE and PEV may include diagnostics particular to the vehicle variations. This document describes the general information required for diagnostics and SAE J2847/4 will include the detail messages to provide accurate information to the customer and/or service personnel to identify the source of the issue and assist in resolution. Existing vehicle diagnostics can also be added and included during this charging session regarding issues that have occurred or are imminent to the EVSE or PEV, to assist in resolution of these items.
X