Refine Your Search




Search Results

Training / Education

Understanding and Using the SAE J2534-1 API to Access Vehicle Networks

With the increase in vehicle electronics, the need to gather data from the vehicle has never been greater. From vehicle development, through vehicle test to vehicle validation, engineers are required to collect data from the vehicle's network. The SAE J2534-1 API (Recommended Practice for Pass-Thru Vehicle Programming) gives engineers the tool to collect vehicle data from multiple network types including CAN, ISO15765, J1850, ISO9141 and Chrysler SCI, using standard J2534 interface devices. In addition, the aftermarket can access the vehicle's OBDII information from the diagnostic connector.
Training / Education

Aircraft Cabin Safety and Interior Crashworthiness

The certification of transport category cabin interiors requires a thorough understanding of Part 25 Transport Category aircraft cabin interior safety and crashworthiness regulations and compliance requirements. Regardless of whether it is a simple modification, a specialized completion (VIP or VVIP) or airline passenger configuration, engineers, designers, and airworthiness personnel must understand and adhere to these requirements. This two-day seminar will begin with a discussion of Commercial off the Shelf (COTS) test requirements.
Training / Education

Introduction to Radar for Automotive Applications

This introduction to radar focuses on understanding how radars work and the trade offs that must be made to achieve its specified performance, focusing on applications to automotive safety and autonomy. The class includes demonstrations of radar signal outputs and describes the chain of hardware and software processing found in most radar systems. Participants will be exposed to all aspects of radar design at a level detailed enough to understand system engineering estimates for the major functions by examining the basic functions of radars, from the waveform generation in the transmitter, all the way to target detection in the receiver.
Training / Education

Keys to Creating a Cybersecurity Process from the J3061 Process Framework

Connected vehicles are increasingly seen as a potential target for cybersecurity attacks. A key differentiator for the automotive industry is the use of cyber-physical systems, where a successful cybersecurity attack could affect physical entities. Often involving embedded electronics and real time control, these systems require different solutions in addition to established IT security principles and reactive responses to threats. Cybersecurity needs to be designed and built into cyber-physical systems throughout the development lifecycle to provide defense in depth.
Training / Education

Introduction to Cyber Security for Commercial Aviation

Despite the advantages of electronic flight bags (EFB), passenger entertainment and email access during flights, and the ability to access aircraft repair manuals electronically, computer interconnectivity throughout aviation has opened the aviation sector to cyber-attacks that could impact flights, data, and safety. This two-day seminar is intended to introduce aviation professionals to the need to implement cyber security throughout commercial aviation including the supply chain.
Training / Education

Design Considerations for Secure Embedded Systems

Embedded hardware is everywhere you look today from your vehicle’s infotainment system to refrigerator to medical devices and everything else in-between. With so much exposure one would think that such devices are secure against attack; however, sadly for many devices this is not the case. For proof, just look no further than your local news reports. They are full of reports on devices being hacked. So, as engineers, how do we go about first identifying and mitigating (or capitalizing) the potential security vulnerabilities within these devices?
Training / Education

Introduction to the Secure Microkernel, seL4

Security continues to be an ever-growing concern in more and more design spaces. There are daily articles about security breaches and there is a need for much higher security through the entire system stack. Thorough testing of systems can lead to stronger security in systems, but testing can only expose so many vulnerabilities. Formal methods is another solution that ensures specific behaviors will not occur. seL4 is the first formally proven microkernel and it is open-source. This makes it a great solution for systems that need strong security.
Training / Education

High Voltage Vehicle Safety Systems and PPE

High voltage vehicle safety is a primary concern for every technician or engineer involved in developing, diagnosing or repairing hybrid or electric vehicles. Engineers/technicians working in this field should complete safety training before they interface with hybrid, plug-in or electric vehicles.
Training / Education

Intelligent Vehicles From Functional Framework to Vehicle Architecture

Considering the increasing demand for vehicle intelligence, more and more students, engineers and researchers are involved in this field. It can be challenging, however, to gain an understanding of the growing variety of intelligent vehicle technologies and how they must function together effectively as a system. This course provides an overview of state-of-the-art intelligent vehicles, presents a systematic framework for intelligent technologies and vehicle-level architecture, and introduces testing methodologies to evaluate individual and integrated intelligent functions.
Training / Education

Fundamentals of High Voltage xEV, Safety, and PPE

Do you know what personal protective equipment (PPE), tools, and instruments are needed to keep you safe around high voltage (HV) vehicles? Are you aware of how to protect yourself or your employees when working around high voltage systems and platforms? Safety is paramount when working around any type of high voltage. As electric vehicles (EV) and EV fleets become more prevalent, the critical need for OEMs, suppliers, companies, and organizations to provide comprehensive safety training for teams working with or around xEV systems and platforms increases.
Training / Education

Controller Area Network (CAN) for Vehicle Applications

The Controller Area Network has become the standard of choice for most automotive manufacturers. Approved for use as an ISO and EPA diagnostic network, its usage continues to grow. This seminar covers the theory and use of the CAN protocol, and its applications in the automotive industry. Details on how the CAN protocol and other standards (J2411, J2284, J1939, ISO 11898, etc.) complement each other will be presented. Attendees will learn about CAN application layers; the latest J1939, J2284, J2411, and IDB standards, regulations, and implementation requirements; and details of device hardware and software interfaces.

Autonomous Systems, 2017

With a mandate in Europe for autonomous emergency braking systems, there is a development happening with radar and camera based systems to do collision mitigation. The challenges include robust object tracking, stationary object detection, reactions for false positives, etc. The developments and challenges in the collision mitigation technology are included in this collection.

Automated Driving Reference Architecture

SAE J3131 defines an automated driving reference architecture that contains functional modules supporting future application interfaces for Levels 3 through 5 (J3016). The architecture will model scenario-driven functional and nonfunctional requirements, automated driving applications, functional decomposition of an automated driving system, and relevant functional domains (i.e., functional groupings). Domains include, but are not limited to, automated driving (i.e., automation replacing the human driver), by-wire and active safety, and those related to automated recovery from faults and system failures (e.g., system bringing the vehicle to a safe state). The architecture will address Tier 1 and Tier 2 functional groupings. The document will include one example instantiation being divides the functionality into two functionality groupings, and will detail the functional and information interface between the groups.

SAE J3076-1 Clock Extension Peripheral Interface (CXPI)

This document is a recommended practice and intended to provide a minimum set of implementation requirements of the Clock Extension Peripheral Interface (CXPI) protocol. This document specifies the parameter requirements of the CXPI protocol. The CXPI protocol provides some selected features of the Controller Area Network (CAN) protocol implemented on a UART-based data link for mainly HMI (Human Machine Interface) of road vehicles electric systems.

J2602DA. Digital Annex defining LIN Supplier IDs for ISO 17987

This document is a Digital Annex defining LIN Supplier IDs for ISO 17987. New LIN Supplier ID requested will be reviewed by the J2602 Task Force and then the approved IDs will be added to the J2602DA to record Supplier contact details.

Communication Transceivers Qualification Requirements - Ethernet

This document covers the requirements for Ethernet PHY qualification. Requirements stated in this document will provide a minimum standard level of performance for the Ethernet PHY block in the IC to which all compatible Automotive PHYs shall be designed. No other features in the IC are tested or qualified as part of this recommended practice. This will assure robust serial data communication among all connected devices regardless of supplier.

Automated Vehicles: Sensors and Future Technologies (DVD)

"Spotlight on Design" features video interviews and case study segments, focusing on the latest technology breakthroughs. Viewers are virtually taken to labs and research centers to learn how design engineers are enhancing product performance/reliability, reducing cost, improving quality, safety or environmental impact, and achieving regulatory compliance. In the episode "Automated Vehicles: Sensors and Future Technologies" (24:31), highly automated driving is looked at in detail as the culmination of years of research in automotive technology, sensors, infrastructure, software, and systems integration. Real-life case studies show how organizations are actually developing solutions to the challenge of making cars safer with less driver intervention. IAV Automotive Engineering demonstrates how a highly automated vehicle capable of lane changing was created.