Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Fundamentals of Truck and Off-Highway Transmission Systems

This course will develop a basic understanding of the fundamentals of operation and explain the current state-of-the-art design of the modern transmission designs. Transmission systems in current production will be used as a practical example throughout the seminar. Two basic product areas of truck and off-highway transmission systems will be reviewed: Planetary Automatic Transmissions, and Power-Shifted Transmissions. The functional requirements of the "current" market and the operational needs of its drivers will drive the course. Course material will be presented in the chronological order in which it was introduced into the marketplace.
Training / Education

Understanding and Using the SAE J2534-1 API to Access Vehicle Networks

With the increase in vehicle electronics, the need to gather data from the vehicle has never been greater. From vehicle development, through vehicle test to vehicle validation, engineers are required to collect data from the vehicle's network. The SAE J2534-1 API (Recommended Practice for Pass-Thru Vehicle Programming) gives engineers the tool to collect vehicle data from multiple network types including CAN, ISO15765, J1850, ISO9141 and Chrysler SCI, using standard J2534 interface devices. In addition, the aftermarket can access the vehicle's OBDII information from the diagnostic connector.
Training / Education

Keys to Creating a Cybersecurity Process from the J3061 Process Framework

Connected vehicles are increasingly seen as a potential target for cybersecurity attacks. A key differentiator for the automotive industry is the use of cyber-physical systems, where a successful cybersecurity attack could affect physical entities. Often involving embedded electronics and real time control, these systems require different solutions in addition to established IT security principles and reactive responses to threats. Cybersecurity needs to be designed and built into cyber-physical systems throughout the development lifecycle to provide defense in depth.
Training / Education

Introduction to the Secure Microkernel, seL4

2019-07-16
Security continues to be an ever-growing concern in more and more design spaces. There are daily articles about security breaches and there is a need for much higher security through the entire system stack. Thorough testing of systems can lead to stronger security in systems, but testing can only expose so many vulnerabilities. Formal methods is another solution that ensures specific behaviors will not occur. seL4 is the first formally proven microkernel and it is open-source. This makes it a great solution for systems that need strong security.
Training / Education

Pathways to Autonomous Trucking

2019-06-20
Vehicle automation and intelligent transportation systems will be the cornerstones of sustainable smart cities of the future. People movers seem to be at the heart of technology development, field trials and on-road testing, and strategic business partnerships when it comes to connectivity and automated driving. Majority of the focus has been on unmanned operation and door-to-door service in urban environments and not on highways. Highways are relatively simpler to handle from an engineering stand-point, but vehicles typically operate at higher speeds, so the cost of accidents is worse.
Training / Education

Controller Area Network (CAN) for Vehicle Applications

2019-05-23
The Controller Area Network has become the standard of choice for most automotive manufacturers. Approved for use as an ISO and EPA diagnostic network, its usage continues to grow. This seminar covers the theory and use of the CAN protocol, and its applications in the automotive industry. Details on how the CAN protocol and other standards (J2411, J2284, J1939, ISO 11898, etc.) complement each other will be presented. Attendees will learn about CAN application layers; the latest J1939, J2284, J2411, and IDB standards, regulations, and implementation requirements; and details of device hardware and software interfaces.
Training / Education

Advanced Power Electronics in Automotive Applications

2019-05-07
It’s estimated that over 40% of the on-board components in the entire car are electronic based and that percentage is expected to rise with the growth of hybrid and autonomous vehicles and will continue to be an enabling technology for a wide range of future loads with new features and functions. From lighting, infotainment, and safety systems, to powertrain systems and beyond, power electronics has become one of the most important areas of the automotive subsystem and bringing this technology to non-electrical engineers will help bridge a knowledge gap that will drive teams forward quicker and more efficiently.
Training / Education

Commercial Vehicle Braking Systems

2019-04-30
Increased public pressure to improve commercial truck safety and new stopping distance regulations have intensified the need to better understand the factors influencing heavy vehicle braking performance. To assist individuals and their organizations in preparing for these new truck braking standards, this seminar focuses attendees on understanding medium-duty hydraulic brake systems and heavy-duty air brake systems and how both systems' performance can be predicted, maintained and optimized.
Training / Education

High Voltage Vehicle Safety Systems and PPE

2019-04-29
High voltage vehicle safety is a primary concern for every technician or engineer involved in developing, diagnosing or repairing hybrid or electric vehicles. Engineers/technicians working in this field should complete safety training before they interface with hybrid, plug-in or electric vehicles.
Training / Education

Design Considerations for Secure Embedded Systems

2019-04-22
Embedded hardware is everywhere you look today from your vehicle’s infotainment system to refrigerator to medical devices and everything else in-between. With so much exposure one would think that such devices are secure against attack; however, sadly for many devices this is not the case. For proof, just look no further than your local news reports. They are full of reports on devices being hacked. So, as engineers, how do we go about first identifying and mitigating (or capitalizing) the potential security vulnerabilities within these devices?
Training / Education

Introduction to Radar for Automotive Applications

2019-04-08
This introduction to radar focuses on understanding how radars work and the trade offs that must be made to achieve its specified performance, focusing on applications to automotive safety and autonomy. The class includes demonstrations of radar signal outputs and describes the chain of hardware and software processing found in most radar systems. Participants will be exposed to all aspects of radar design at a level detailed enough to understand system engineering estimates for the major functions by examining the basic functions of radars, from the waveform generation in the transmitter, all the way to target detection in the receiver.
Standard

A Tilt Table Procedure for Measuring the Static Rollover Threshold for Heavy Trucks

2011-05-17
CURRENT
J2180_201105
The test procedure applies to roll coupled units such as straight trucks, tractor semitrailers, full trailers, B-trains, etc. The test is aimed at evaluating the level of lateral acceleration required to rollover a vehicle or a roll-coupled unit of a vehicle in a steady turning situation. Transient, vibratory, or dynamic rollover situations are not simulated by this test. Furthermore, the accuracy of the test decreases as the tilt angle increases, although this is a small effect at the levels of tilt angle used in testing heavy trucks. The test accuracy is accepted for vehicles that will rollover at lateral acceleration levels below 0.5 g corresponding to a tilt table angle of less than approximately 27 degrees. Even so, the results for heavy trucks with rollover thresholds greater than 0.5 g could be used for comparing their relative static roll stability.
Standard

Energy Transfer System for Electric Vehicles - Part 2: Communication Requirements and Network Architecture

2014-02-26
CURRENT
J2293/2_201402
SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, regardless of architecture, is responsible for the conversion of AC electrical energy into DC electrical energy that can be used to charge the Storage Battery of an EV, as shown in Figure 1. The different physical ETS system architectures are identified by the form of the energy that is transferred between the EV and the EVSE, as shown in Figure 2. It is possible for an EV and EVSE to support more than one architecture.
Standard

Primary Single Phase Nominal 120 VAC Wiring Distribution Assembly Design - Truck and Bus

2008-01-14
HISTORICAL
J2698_200801
1.1 This SAE Recommended Practice covers the design and application of primary on-board wiring distribution system harnessing for surface vehicles. This document is intended for single phase nominal 120 VAC circuits that provide power to truck sleeper cab hotel loads so that they may operate with the main propulsion engine turned off. The power supply comes from alternative sources such as land-based grid power, DC-AC inverters and auxiliary power generators. The circuits may also provide power to improve vehicle performance through charging batteries or operating cold-weather starting aids. 1.2 This document is not intended to provide guidance for electric or hybrid electric vehicle wiring circuits. Refer to SAE J1673 for high voltage automotive wiring assembly design. 1.3 Engine block heaters are 120 VAC devices that are used on a multitude of vehicle platforms in addition to trucks with sleeper cabs. Generally, the engine block heater circuit is wired independent of hotel loads.
Standard

Primary Single Phase Nominal 120 VAC Wiring Distribution Assembly Design—Truck and Bus

2018-10-04
CURRENT
J2698_201810
This SAE Recommended Practice covers the design and application of primary on-board wiring distribution system harnessing for surface vehicles. This document is intended for single phase nominal 120 VAC circuits that provide power to truck sleeper cab hotel loads so that they may operate with the main propulsion engine turned off. The power supply comes from alternative sources such as land-based grid power, DC-AC inverters and auxiliary power generators. The circuits may also provide power to improve vehicle performance through charging batteries or operating cold-weather starting aids.
Standard

Primary Single Phase Nominal 120 VAC Wiring Distribution Assembly Design—Truck and Bus

2014-11-24
HISTORICAL
J2698_201411
This SAE Recommended Practice covers the design and application of primary on-board wiring distribution system harnessing for surface vehicles. This document is intended for single phase nominal 120 VAC circuits that provide power to truck sleeper cab hotel loads so that they may operate with the main propulsion engine turned off. The power supply comes from alternative sources such as land-based grid power, DC-AC inverters and auxiliary power generators. The circuits may also provide power to improve vehicle performance through charging batteries or operating cold-weather starting aids.
X